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Abstract In social psychology, emotional contagion describes the widely observed phe-
nomenon of one person’s emotions being influenced by surrounding people’s emotions. While
the overall effect is agreed upon, the underlying mechanism of the spread of emotions has
seen little quantification and application to computational agents despite extensive evidence
of its impacts in everyday life. In this paper, we examine computational models of emotional
contagion by implementing two models (Bosse et al., European council on modeling and
simulation, pp. 212–218, 2009) and Durupinar, From audiences to mobs: Crowd simulation
with psychological factors, PhD dissertation, Bilkent University, 2010) that draw from two
separate lines of contagion research: thermodynamics-based and epidemiological-based. We
first perform sensitivity tests on each model in an evacuation simulation, ESCAPES, showing
both models to be reasonably robust to parameter variations with certain exceptions. We then
compare their ability to reproduce a real crowd panic scene in simulation, showing that the
thermodynamics-style model (Bosse et al., European council on modeling and simulation,
pp. 212–218, 2009) produces superior results due to the ill-suited contagion mechanism at
the core of epidemiological models. We also identify that a graduated effect of fear and
proximity-based contagion effects are key to producing the superior results. We then repro-
duce the methodology on a second video, showing that the same results hold, implying
generality of the conclusions reached in the first scene.
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1 Introduction

Emotional contagion, the tendency for one’s emotions to reflect the emotions of others, has
been shown to arise in a wide range of scenarios in everyday life [13]. Its effects are felt every
time someone cheerfully walks into the room with a big smile and brightens up everyone’s
day. Extensive work has been done in researching emotional contagion’s role in occupations
that require an employee to promote certain emotions in clients via displayed emotions, such
as bill collectors promoting anxiety or flight attendants creating good cheer [12,25]. Less
often, but with far more severe implications, it is also felt during the spread of fear and anxiety
that surrounds any crowd-based disaster.

Virtual agents designed for these domains must also incorporate the effects of emotional
contagion. For example, virtual patients in clinical training applications must incorporate
not only the linguistic response of a real patient to a clinician’s questions [18] but also
a real patient’s emotional response to a clinician’s demeanor that results from emotional
contagion. Similarly, an evacuation training simulation must include not only emotional
contagion between simulated agents and its impact on escape behavior, but also exhibit
emotions accurately to the user to mimic the contagion effects in a true evacuation [29].
With the growing awareness of the powerful impact that emotion has on human behavior,
the contagion of these emotions can no longer be marginalized in virtual agents and must be
accurately modeled and incorporated.

Recent work has sought to quantify the qualitative findings of social psychology into
useable models, primarily drawing from two bodies of research on similar phenomena.
Researchers at VU University introduced one of these in [4] (ASCRIBE) that used a determin-
istic, interaction-based model derived directly from a social psychology theory of emotional
contagion [1]. This model is a prototypical example of the heat dissipation phenomena stud-
ied in thermodynamics wherein neighboring substances will transfer energy to each other
at rates unique to each substance (i.e., specific heat). In contrast, Durupinar [11] used a
probabilistic threshold model wherein successive interactions with emotionally ‘infected’
people raises the chance of infection with an emotion. This model is a standard one from the
extensive epidemiology literature that models the spread of diseases [9,19,23], the research
in diffusion of innovations [26], and social contagion work [27].

Although both models come from studies of contagion phenomena, they use fundamen-
tally different mechanisms. While work could proceed using both approaches by extending
existing models to accurately reproduce increasingly complex situations, it remains unclear
which contagion paradigm should be used in emotional contagion. Perhaps a new mechanism
should be designed, but the lack of data in this domain makes evaluation very difficult. We
not only empirically compare these two paradigms but begin to identify the key features that
should be added to the underlying contagion mechanisms to further improve their fidelity in
reproducing human emotional contagion.

As we outline in Table 1, there are 6 primary differences between the Durupinar and
ASCRIBE models. First, the Durupinar model follows in the tradition of epidemiology where
it is nonsensical to discuss a ‘degree’ of infection and uses a binary specification for emotional
level, whereas the ASCRIBE model uses a continuous description. Second, with no degree of
emotion, the Durupinar model cannot specify differences in contagion that may result from
differing levels of emotion (e.g., a high-fear may cause nearby agents to become more fearful
than a low-fear agent would). Third, the Durupinar model includes a decay factor whereas the
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Table 1 Key model differences Feature ASCRIBE Durupinar

Emotion level Continuous Binary

Fear level impacts contagion Yes No

Emotional decay No Yes

Interaction type Individual Threshold

Interaction determinism Deterministic Probabilistic

Proximity Yes No

ASCRIBE model does not. Fourth, the ASCRIBE model uses an individual interaction model
where each agent encountered causes some contagion, whereas the Durupinar model uses a
threshold model in which each encounter causes an increased chance of contagion. Fifth, the
ASCRIBE model uses a deterministic interaction scheme, whereas the Durupinar model uses
a probabilistic one. Finally, the latest ASCRIBE model [5] incorporates proximity’s effect
on contagion, whereas the Durupinar model does not.

We begin by using the ESCAPES evacuation simulation [29] to explore the impact of
replacing the original ESCAPES model with these two models on predicted outcomes, show-
ing substantial differences in their predictions, motivating the need for an accurate model
of emotional contagion in this context. Even in simulation, we are able to identify key dif-
ferences that indicate epidemiological/social contagion models are less suited to modeling
emotional contagion. Next, we attempt to reproduce a subset of 35 people from real video
footage of a panic situation using each of the models, showing the ASCRIBE model to indeed
be superior to both the Durupinar model and the original ESCAPES model, beating out the
Durupinar model by 14 % per agent per frame during the 15 s scene. To identify which of the
key features causes the differences in the results, we test hybrid models to conclude that while
adding a ‘decay’ feature (as found in the Durupinar model) to the ASCRIBE model does
not improve it, removing proximity effects and fear’s graduated effect on speed substantially
worsen the model. Finally, we perform the same evaluation on a second video, extracting 10
people, and show the ASCRIBE model to again be superior, outperforming the Durupinar
model by 12 % per agent per frame during the four-second scene.

2 Related work

Seminal works in social psychology first began the discussion around emotional contagion.
In particular, [13] first codified the observed phenomena that were just beginning to receive
researcher attention. Follow-up work by the co-authors as well as in related fields such
as [1,12,25] in managerial and occupational sciences continued to detail the effects of
the phenomenon in new domains. Recently, there have been works beginning to quantify
emotional contagion and explore cross-cultural variations in attributes that affect emotional
contagion [10,21].

From a computational perspective, the previously mentioned work from VU University
and Durupinar are two of the most recent models of emotional contagion upon which a few
follow-up works have been based [4,3,5]. As mentioned in Sect. 1, the ASCRIBE model
resembles heat dissipation models found in basic physics wherein each substance has its own
heat dissipation rate and heat absorption rate. The Durupinar model draws inspiration from
a long line of contagion models [9,19] that was popularized in the diffusion of innovations
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[26] literature and has also seen heavy use in other types of social (e.g., belief, behavior, idea)
contagion [27].

Diffusion modeling in computer science has primarily followed the influence maximiza-
tion paradigm formalized by [17], where an entity seeks to maximize the diffusion of its
influence across a known network. Follow-up works have considered numerous variations
on both the linear threshold model (as in Durupinar) and independent cascade models of dif-
fusion as well as competitive diffusion modeling where multiple parties compete to spread
their influence across a network [2,6,20]. The primary focus of this type of work has been
the identification of the optimal set of ‘seed’ nodes from which to begin a diffusion process
to maximize the coverage of the spread. Typical example domains cited include social mar-
keting and rumor spreading, but these works have not considered the diffusion of emotions
in a crowd, nor used live crowd data for model verification or calibration as we do here.

3 ESCAPES

Although not the focal point, the ESCAPES evacuation simulation [29] serves as the test bed
for our models of emotional contagion, so we describe it briefly here. ESCAPES focuses on
the features identified by experts that particularly affect airport evacuations [8]. It models
realistic agent knowledge about the environment by only letting agents recall the location of
the exit they entered from, which will not always be the nearest exit. Furthermore, agents
have a random probability to forget the location of known exits, as has been noted to occur
in the evacuation literature [7]. ESCAPES also models a realistic spreading of knowledge
about the need for agents to evacuate, which is unlike most evacuation simulations in which
all agents immediately know they must make their way out. This mimics the pre-evacuation
delay that is widely studied in evacuation research [22,15]. In airport settings, the presence
and unique behavior of families was noted to be of particular importance [8], so ESCAPES
also models family groups that, if split up, will seek each other out before attempting to find
an exit. Clearly, the presence and behavior of authority figures is also a key feature in airports
and ESCAPES includes authority agents that exhibit a variety of patrolling behaviors, know
the location of all exits in the environment, are notified earliest about the need to evacuate,
and communicate their knowledge to surrounding agents.

Finally, the ESCAPES model also includes a baseline model of individual emotion and
emotional contagion between agents. Specifically, we model individual fear and its impact
on behavior by increasing the speed of more fearful agents. ESCAPES uses a basic model
of emotional contagion that we use as a baseline for comparison with the ASCRIBE and
Durupinar models. In the ESCAPES model, agents inherit the highest fear level of neighbor-
ing agents and maintain their fear level until they escape the environment. A full listing of the
features, both first and second order, included and references to work citing their importance
during evacuations can be found in Table 2. We replace the original model of emotional
contagion with the Durupinar and ASCRIBE models to compare the simulated effects of
using each of the different emotional contagion models. Specifically, we will show results
examining the spread of emotion through the crowd and predicted evacuation safety metrics.

4 ASCRIBE model

Introduced in 2009 by researchers at VU University [4] and built upon in multiple works
including [3,5], the ASCRIBE model iterates through all agents and deterministically
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Table 2 Phenomena modeled in
ESCAPES

Phenomenon Reference

People forget their entrance [7]

First-time visitors [8]

Heightened emotions lead to chaos [28]

Herding behavior [14]

Pre-evacuation delay [15,22]

Families gather before exiting [24]

Authorities calm people [28]

Table 3 Aspects related to a
sender S, receiver R, or both Level of the sender’s emotion qS

Level of the receiver’s emotion qR

Sender’s emotion expression εS

Openness for received emotion δR

Strength of the channel from sender to receiver αS R

calculates new emotional levels based on a set of individual and pairwise parameters that we
describe here. The mechanism used resembles heat dissipation modeling in physics, wherein
each material has a specific heat capacity, which can be likened to a person’s susceptibility to
other people’s emotions in emotional contagion. As such, the model moves a crowd towards
a weighted-average of the group’s emotional levels, just as heat will dissipate until adjacent
temperatures are the same, barring generative heat sources.

The model defines five parameters (shown in Table 3) for every pairwise interaction based
on theory put forth in [1]: level of sender’s emotion qS , level of receiver’s emotion qR , sender’s
expressiveness εS , receiver’s openness δR , and the channel strength between S and R αS R .
All values are numbers in the interval [0, 1]. At each time step, each agent calculates the
average emotional transfer from all relevant agents. Specifically, the differential equations
for emotional contagion in a group G of agents is:

dqR/dt = γR(q∗
R − qR)

for all R ∈ G, where γR is the overall strength at which emotions from all other group
members are received, defined by γR = �S∈G\{R}γS R . q∗

R is the weighted combination of
emotions from the other agents, defined with a weight factor:

wS R = εSαS R/�C∈G\{R}εCαC R

q∗
R = �S∈G\{R}wS RqS

Specifically, from a sender S to a receiver R, the strength of the emotion qS received would
be γS R = εS · αS R · δR . [4] details the mathematical formulation, but the emotional level of
an agent converges towards a weighted average of the group’s emotional level. The speed at
which this convergence occurs as well as the weighting depend on the parameter settings for
the channel strength, expressiveness, and openness for each agent as well as, of course, their
individual emotional levels.

The latest version of the model [5], extends the original emotional contagion model and
includes beliefs and intentions and belief/intention contagion as well. However, as our goal
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is to empirically evaluate emotional contagion models and the latest work extends far beyond
simply emotional contagion, we leave its validation to future work. Thus, we do not use the
extended model but instead modify the initial model by incorporating a proximity effect as
done in [5].

5 Durupinar model

Durupinar [11] uses a probabilistic threshold model based on epidemiological models of dis-
ease contagion. While many types of epidemiological models exist [9,19,23,27], Durupinar
opts for a baseline model from [9]. In this model, individuals can be in either susceptible
or infected states. Other models incorporate additional states such as inoculated, recovered,
etc. which could be incorporated in extensions to Durupinar’s basic model, but have not been
explored in the context of emotional contagion. The epidemiological model’s applicability
to emotional contagion was not discussed in [9], from which Durupinar drew, but its use by
Durupinar assumes similarity between disease spread and emotion spread that we criticize
in this work.

Each agent begins with a randomized threshold drawn from a pre-determined log-normal
distribution. At each time step, T , for each agent, a random agent is chosen from the relevant
population group. If the agent is infected, it generates a random dose, d j , with size drawn
from a pre-determined log-normal distribution and passes it to the original agent. If the agent
is not infected, then a dose of 0.0 is generated. Each agent maintains a running history of
the last K doses received. If the cumulative total of all doses in the agent’s history exceeds
his threshold, the agent enters the infected state (Eq. 2). This causes the emotion level to
be set to 1.0 with an exponential decay towards 0.0 at a rate β (Eq. 4), at which point the
agent re-enters the susceptible state. A non-zero emotion level indicates that the agent has
the emotion, but the actual value does not hold meaning other than to track the decay. The
random dose and threshold are generated from log-normal distributions (Eqs. 3, 4) with
user-specified averages and standard deviations and K is a static global variable.

D j (t) =
t∑

t ′=t−K+1

di (t
′) (1)

d j = log-N (μd j , σ
2
d j

) (2)

Tj = log-N (μTj , σ
2
Tj

) (3)

et = et−1 − β · et−1 (4)

Durupinar also provides a psychological basis for setting the dose and threshold distrib-
ution values by incorporating findings from Jolliffe and Farrington [16] on the correlation
between the basic empathy scale and the OCEAN personality factors. A much richer emo-
tional model is also described, but for the purposes of this study, we only use the emotional
contagion model. The particular model introduced here is but one example from the range of
similar contagion models [19,23,27], but they all share a binary, probabilistic treatment of
effect. While it may seem trivial to interpret the decaying emotional indicator as a continuous
variable, this alteration proves unhelpful in our experiments. As we show in the following
sections, this fundamental difference between the heat dissipation-style models (such as
the ASCRIBE model) and epidemiological models leads to inaccuracies in the Durupinar’s
modeling of emotional contagion.
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Fig. 1 Evacuation scenario

6 Simulation experiments

Although they are similar from a computational performance perspective, the ASCRIBE
model and the Durupinar model use very different mechanisms to recreate emotional con-
tagion. Thus, we evaluate the impact of these differences in two ways, beginning first with
simulation. We ran the evacuation simulation, ESCAPES, using each model to perform sen-
sitivity analysis as well as identify any qualitative trends that might support or discredit either
one of the models. We can also evaluate the model’s robustness to errors in parameter esti-
mation, which is extremely important in emotional and crowd modeling which usually lack
high fidelity, fine-grain data.

For all the experiments discussed in this section, the same map was used (spatial layout
can be seen in Fig. 1) and 30 trials were run for each setting. It features 2 large spaces that
represent airport boarding areas, each with an exit (marked with dots), connected by hallways
which are lined with smaller spaces that represent shops. Fifteen seconds into the simulation,
an event occurs at the center of the scenario (marked by the triangle), inciting fear and a need
to evacuate that is communicated by authority figures to pedestrians. For initial fear levels,
we define a ‘seeing distance’, σd . Agents within this distance of an event will immediately
have a fear level of 0.75 in the ASCRIBE model and 1.0 in the Durupinar model, since the
Durupinar model does not feature a continuous measure of fear. We also define a ‘hearing
distance’, ωd , within which the agent will receive 0.1 in the ASCRIBE model and 1.0 in the
Durupinar model. The scenario features 100 normal pedestrians, including 10 families of 4
each, as well as 10 authority figures that patrol the scenario. In Sects. 6.1 and 6.2 we evaluate
model robustness and then identify qualitative differences in Sect. 6.3.

6.1 ASCRIBE model

In examining the contagion effect, the parameters of interest in the ASCRIBE model were
the individual expressiveness settings and individual openness settings. The channel strength
is set to 1 if an agent is nearby and 0 otherwise, as done in [5]. Given that we had a whole
population of agents, we elected to use randomly drawn values for expressiveness and open-
ness based on a normal distribution. It may be useful to relax this assumption of a normal
distribution in future work, perhaps when more quantitative analysis of human contagion
parameters becomes available. We explored variations of the averages and standard devia-
tions (SD) used, but surprisingly, none yielded qualitative changes in the trends observed
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(a) (b)

Fig. 2 ASCRIBE model: variations of openness on contagion

in the simulation from both a contagion perspective (i.e., how the fear spread) and a safety
analysis. The only exceptions were, unsurprisingly, when the receiver openness or sender
expressiveness parameters varied tightly around a very low mean, often leaving many agents
with 0.0 openness or expressiveness. Very low receiver openness values created perpetual
high-fear sources that constantly raised the fear levels of surrounding agents without ever
dissipating their own fear. At very low sender expressiveness values, the majority of agents
remain at their initial fear level. Both cases result in vastly different trends from the mean
convergence behavior seen in the other settings.

To illustrate the contagion effect of variations in the parameter settings, Fig. 2a plots the
percentage of people with low fear (≤ 0.1) on the y-axis and the time step on the x-axis,
while Fig. 2b shows the same results for high-fear people. In both figures, openness varied
from 0.1 to 0.9 in increments of 0.2 while keeping a SD of 0.1 and sender expressiveness
was fixed with an average of 0.5 with a SD of 0.1. In Fig. 2a, when an event first occurs,
those near it become fearful and slowly raise nearby peoples’ fear as they move towards exits,
causing a steady decline in the percentage of people with fear less than 0.1 that only rises
again as fearful agents make their way out of the simulation. Note how the dotted line (0.1)
dips much lower than the other lines, showing the exception mentioned above. In Fig. 2b,
a few agents near the event have their fear raised very high, but as they encounter zero-fear
agents, their fear levels are brought down below 0.75 and never again rise higher since no
new events occur. The tightness of the lines implies that the trend is robust to variations in the
average receiver openness except at very low settings. Similar tightness of lines was observed
in variations of sender expressiveness, with the same exception.

Figure 3 focuses only on variations of openness to illustrate the trends observed in evac-
uation safety. Figure 3a plots the percentage of people that have not escaped on the y-axis
and time steps on the x-axis, whereas Fig. 3b shows the average number of agent-agent
collisions accumulated by each person remaining in the simulation on the y-axis and time
steps again on the x-axis. Since the simulator does not explicitly handle agents colliding, we
define ‘collisions’ as anytime two agents touch each other. Figure 3a shows all parameter set-
tings for openness leading to almost identical escape times for people during the simulation.
Figure 3b shows extremely similar collision counts for people across the parameter space as
well. Thus, when measuring the second-order metrics of pedestrian escape times and number
of collisions, the model remains robust to parameter variations of the type tested. Variations
of the other parameters’ averages and standard deviations all resulted in the same extremely
tightly clustered lines as seen in Figs. 2 and 3 (with the previously noted exception).
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(a) (b)

Fig. 3 ASCRIBE model: variations of openness on safety

(a) (b)

Fig. 4 Durupinar model: variations of K on contagion

6.2 Durupinar model

Sensitivity analysis of the Durupinar model is considerably more delicate than the ASCRIBE
model, because although there are only five key parameters for the whole population (as
compared to two per individual plus one for each pair for the ASCRIBE model) and even
a small change in a single parameter can result in qualitatively different trends as we will
show. Thus, we begin with experimentally chosen default values and vary each parameter to
identify key sensitivities. In particular, we begin with a baseline of K of four, dose average
of 2, dose standard deviation of 0.5, threshold average of 7, and threshold standard deviation
of 2.

Figure 4a shows the percentage of no-fear pedestrians (= 0) on the y-axis and time
steps on the x-axis, with each line representing a different setting of K . Figure 4b shows
the percentage of newly fearful pedestrians (defined as ≥ 0.75) during the same variations
of K . Unsurprisingly, altering any one of the parameters’ averages or standard deviations
individually alters the magnitude of the contagion effect, but not the overall trends. The
exceptions are at values far from the baseline. For example, at extremely low values for K
or dose distribution average and at extremely high values for threshold distribution average,
when very few agents become fearful at all, as seen in the dotted K = 2 line in Fig. 4a. This
implies that the model remains robust to parameter changes with respect to the contagion
trends that emerge as long as parameter values are chosen within a tolerance of the baseline.
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(a) (b)

Fig. 5 Durupinar model: variations of K on safety

Similar results were found for variations of threshold and dose strength averages and standard
deviations.

We again explored the second-order impacts of parameter variations on the safety of the
evacuation by measuring the evacuation rates and average number of collisions of pedestrians
in the simulation. Figure 5a shows the percentage of people that have not yet evacuated on
the y-axis and the time steps on the x-axis, while Fig. 5b shows the average number of agent-
agent collisions accumulated for each person remaining in the simulation on the y-axis and
the time steps on the x-axis. As in the ASCRIBE results shown previously, both of these
graphs show extremely similar results across the parameter space tested. Variations of other
parameters showed very similar results.

6.3 Key differences

In Sects. 6.1 and 6.2 we have shown the ASCRIBE model to be robust to parameter variations
(except at the extreme of zero) and the Durupinar model to be robust if we stay within a
tolerance of a baseline. In conducting these simulation tests and taking a closer look at the
contagion effect, we already find that a number of key differences can be identified between
the two models. One difference can be seen by comparing Figs. 2b and 4b, where the spikes
occurring throughout the graph indicate that Durupinar model produces newly fearful agents
throughout the life of the simulation, regardless of the nature of the event, and the ASCRIBE
model only exhibits a spike due to the impact of the event. Under the Durupinar model,
fear can be transferred indefinitely under certain parameter settings. In the ASCRIBE model,
encounters with agents who are less fearful will slowly erode the average fear level, eventually
reaching zero after sufficiently many agents have been encountered.

Also, combining the binary fear metric with a speed modifier, as done in ESCAPES,
results in only extremes of movement speeds. While one could argue that this is a result of
the simulation, the model itself cannot incorporate any gradation of effect. For example, even
if we directly map the fear level (as it decays) to the speed modifier, an agent that is near
zero-fear (and is hence traveling slowly) can infect another agent who will then dart off at
maximal speed since he begins at maximal fear, as evidenced by the spikes in Fig. 4b. This
may occur as a result of physiological or informational changes, but no evidence suggests
this would occur from emotional contagion alone. A more fundamental alteration is needed
to change this aspect of epidemiological / social contagion models for convincing application
to emotional contagion.
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Finally, as mentioned, the Durupinar model does not include a proximity of effect, whereas
the ASCRIBE model does. This obviously means that the Durupinar model could potentially
cause contagion of emotions to agents randomly throughout the world of the simulation, a
very unrealistic effect, as emotional contagion requires some form of interaction by definition.
As seen in a comparison between Figs. 2a and 4a, the Durupinar model induces more fearful
agents far more rapidly than the ASCRIBE model does because its contagion calculation
incorporates the entire population immediately.

7 Scene reproduction

Now we discuss the validation method used to evaluate the models of emotional contagion,
first used in [5]. In their work, VU University researchers used a 15-s portion of a crowd
panic scene in Amsterdam caused by a screaming person1 as their dataset for validating
their general mental state contagion model. In processing the data, the researchers traced
the locations of 35 people scattered through the crowd through the 15 s, converted these into
top-down coordinates and built a simulator to reproduce the paths of the people in simulation
(for more detail on the spatial parametrization, please refer to [5]). The 35 people chosen
can be interpreted as point estimations of the speed and trajectory of subsets of the crowd
throughout the scene. Thus, accurately predicting the movement of these individuals would
translate into accurate prediction of the overall movement of the crowd. Furthermore, since
realistic agent collisions remains an open research question, using every individual in the
crowd would present novel challenges beyond the scope of this work.

The operating hypothesis was that a simulator without their mental state contagion model
would not be able to reproduce the scene as accurately as a simulator with it. To test this
hypothesis, the researchers tuned parameters associated with each agent’s maximum speed,
a global parameter specifying a ‘sight range’ within which agents could ‘see’ the event, and
an initial desire to remain in place. The tuning was done via hill-climbing to minimize the
error produced by the simulator, testing each parameter and moving a single parameter at a
time in the direction of highest error reduction until a local optimum was reached. Error was
defined as the sum of the average distances from each simulated agent to the corresponding
real people’s locations over the life of the simulation. Errors are reported in pixel-distances,
measured in the converted top-down coordinate system. Real-world distance equivalents are
discussed at the end of each section. Finally, VU University researchers incorporated the
mental state contagion model, tuning a parameter associated with the proximity of contagion
and showed that lower error was achieved with this addition.

We extended the approach of the VU University researchers by importing the 35 agent
traces into the ESCAPES simulator and setting three exit locations towards which agents
proceed when the simulation starts. The locations were chosen to roughly mimic the real
situation, leading to most agents moving in the same direction as the people did. Some
agents did not move precisely in the simulated direction as a result of obstructions that we
did not model and a person very close to the screaming person that barely moved. The primary
task was to match the crowd’s location over time, first without contagion effects and then with
each contagion model in turn. Since people’s directions did not vary based on the emotion,
the contagion model could only impact the speed of each agent.

The speed of an agent, without incorporating contagion effects, is based on the emo-
tional level multiplied by the maximum speed multiplied by a distance-based modifier.

1 http://youtu.be/0cEQp8OQj2Y.
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The distance-based modifier is σs if the agent is within sight range and ωs if the agent
is only within hearing distance. We include these tunable speed modifiers so that the simu-
lation is robust to the choice of initial fear levels, which is particularly helpful given the lack
of data surrounding how to set the initial fear levels.

As an example of the speed calculation, under the ASCRIBE model, if an event occurred
within hearing distance but not seeing distance of an agent, and the hear-range speed modifier
was 0.2, the agent’s speed would be (0.1)(0.2)(Smax ), where Smax is the maximum speed
allowed in the simulation. Under the Durupinar model, the 0.1 would be replaced with a 1.0.
σd , ωd , σs , and ωs are global parameters applied to all agents that we tune experimentally via
the same methodology as used in [5], where our measure of error is the sum of simulation-
space coordinate distance between the simulated agents and the actual agents.

For each contagion model, we use the default settings discussed in Sect. 6, with the
exception of the ASCRIBE model’s channel strength, which we set to 1.0 or 0.0 depending
on the proximity of other agents, as was done in [5]. In the ASCRIBE model, we follow
[5] and fix Receiver Openness and Sender Expressiveness each to 0.5 for every agent, but
allow the proximity parameter to be tuned. In the Durupinar model, we set the dose history
to 6, the mean and standard deviation of the dose strength distribution to 2 and 0.5, and
the mean and standard deviation of the threshold distribution to 7 and 2. The ESCAPES
contagion model, used as a baseline for comparison, only requires tuning of the proximity
parameter as it simply brings all agents to the highest level of fear found in surrounding
agents. In an attempt to not only identify which model is more appropriate but also to discern
key features from unsupported augmentations, we used each model as given, then turned
on/off implementations of ‘decay’, emotional level impacting speed, and proximity effects.
For each parameter setting, 30 trials were run.

7.1 Amsterdam crowd

We first use the Amsterdam crowd scene featured in [5] (Fig. 7). In their results, VU University
researchers found that the inclusion of contagion effects achieved significantly less error in
reproducing the movement of a selection of 35 agents from the crowd scene. Upon closer
inspection, the data revealed that the subset of agents within a particular radius surrounding
the event caused the majority of every model’s error. Specifically, approximately 80 % of the
error in each of the models’ results can be attributed to the 13 agents nearest the explosion.
The distinction between ‘near’ and ‘far’ agents is an empirical categorization based on the
error attribution mentioned.

We show the error breakdown in Fig. 6. Three categories of error are shown: faraway
agents, the agent closest to the yelling, and the other nearest agents excluding the closest
agent. The agent closest to the yelling barely moved in the video, which is a situation that the
cognitive model of ESCAPES does not naturally simulate. Hence, all models produce large
errors quite unrelated to the underlying emotional contagion model. The faraway agents, by
contrast, move extremely little, making it easy to fit any model to them by simply forcing
those agents to remain completely still. Thus, the largest portion of the error, that caused by
the agents near the event (except the closest agent) also provides the most potential for the
emotional contagion models to differ.

The results from the different variations of each model is listed in Table 4. Table 4a shows
the results for the base models as defined previously, illustrating OVERALL error (for all
35 agents) as well as the error associated with the most substantial group of agents, the 12
NEAR the event, excepting the closest agent. Table 4b shows the variations associated with
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Fig. 6 Amsterdam crowd (35
agents): error attribution

Table 4 Amsterdam crowd:
average error (in pixels) per agent
per frame

Model Overall Near

(a) Base models
None 0.375 0.699

ESCAPES 0.375 0.698

ASCRIBE 0.362 0.663

Durupinar 0.383 0.758

Model Overall Near

(b) ESCAPES variations

Base 0.375 0.698

Decay 0.379 0.703

No speed 0.381 0.721

No prox 0.385 0.721

Variation Overall Near

(c) ASCRIBE variations

Base 0.362 0.663

Decay 0.363 0.687

No speed 0.387 0.767

No prox 0.414 0.797

Model Overall Near

(d) Durupinar variations

Base 0.383 0.758

No decay 0.387 0.771

Speed 0.388 0.784

Prox 0.380 0.754

the original ESCAPES formulation. The second line of the table indicates that a ‘decay’
feature was added to the base model. The third line indicates that we turned on/off the effect
that different levels of fear have on speed. When off, this means that any level of fear causes
agents to travel at maximum speed. When on, the speed of travel is proportional to the fear
level. Finally, the fourth row represents whether the contagion effect was moderated with a
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tuned proximity effect. Table 4c and d show the analogous set of variations for the ASCRIBE
and Durupinar models.

No results from the ESCAPES contagion formulation were statistically significantly better
than the no contagion case. This, as well as all remaining statistical tests in this work, was
measured with a one-tailed t test. This indicates that the ESCAPES contagion model does
not add anything in the context of this dataset. In sharp contrast, all results for ASCRIBE
and Durupinar were statistically significantly different from the no contagion case, although
in the case of Durupinar, they were significantly worse (p < 0.001). As found in [5], the
ASCRIBE model’s formulation provided substantial improvements in the simulation’s ability
to reproduce this scene (14 % superior to Durupinar for NEAR agents in the Base cases for
the 15 s clip).

For ESCAPES, no feature change offered statistically significantly different results from
the base case, implying that in this formulation, for this data set, adding ‘decay’ did not help
and the presence of ‘speed’ and ‘proximity’ features did not add value to the model either. In
the ASCRIBE model, adding ‘decay’, removing ‘speed’, and removing ‘proximity’ all had
statistically significantly negative impacts on the results (p < 0.001). This implies that the
‘speed’ and ‘proximity’ features were crucial to generating the positive result in the Base
case and adding ‘decay’ does not improve it. Finally, removing ‘decay’ produced significantly
worse results in the Durupinar model, and the other two variations did not produce statistically
different results.

These results imply that the ASCRIBE model’s contagion mechanism and current for-
mulation provides the highest fidelity in modeling this dataset versus other variations and
models tested. To properly frame the magnitude of improvement, consider a crowd being
modeled for five minutes. In real terms, the 14 % average difference between ASCRIBE and
Durupinar amounts to over two meters of error over the 12 NEAR agents in a single frame.
‘Small’ errors like this in the first 15 s can easily snowball into a completely different crowd
structure after five minutes, suggesting much larger implications to this 14 % improvement.

7.2 Greece crowd

Since one dataset could be particularly well-suited to the ASCRIBE model, we elected to
perform the same process on a second video from protests in Greece in 2010,2 where officers
fired tear gas into the middle of a small crowd (Fig. 7). The clip used was from 0:16 to
0:20, from which 24 frames were extracted for analysis. 10 figures throughout the crowd
were traced for the duration of the clip. Conversion of the pixel coordinates into top–down
coordinates was done by first estimating true axes in the top–down view by tracing the
sidewalk and steps that were perpendicular to the sidewalk. Then, the distance to each of the
axes was calculated (where ‘distance’ is measured from the point to the axis, parallel to the
other axis) and used as the new coordinates.

Even in such a short video clip with such a small crowd that we are able to match extremely
well, the emotional contagion models still showed significant differences (Table 5). Sur-
prisingly, the original ESCAPES model performs extremely well, matching the ASCRIBE
model’s accuracy. However, as before, we see the Durupinar model again performing sub-
stantially worse than all other models, implying some generality of the previous result. In
fact, this scene is an even stronger testament than the previous one, as the ASCRIBE model
performs 12 % better than Durupinar in the Base case per agent per frame during only a four-
second clip as opposed to the 15 s Amsterdam clip. For both the original ESCAPES model

2 http://www.youtube.com/watch?v=NsoDwM_KKfo, posted May 5, 2010.
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(a) (b)

Fig. 7 Amsterdam and Greece video screenshots

and the ASCRIBE model, removing fear’s impact on speed and the proximity effect statisti-
cally significantly worsen’s the model’s accuracy (p < 0.001). Surprisingly, the ASCRIBE
model benefits from the addition of a decay component (p < 0.001), implying that a decay
effect may be context-dependent.

8 Conclusions

In this work, we have made the first attempt to compare existing models of emotional conta-
gion and identify key attributes of appropriate models using real data. The ASCRIBE model
produced a 14 % improvement per agent per frame over the Durupinar model in a 15 s clip
and a 12 % improvement in only a four-second clip. After attempts to transform the Durupinar
model into one more similar to the ASCRIBE model with little success. These results were
consistent across 45 total agents in two unrelated crowd dispersion scenes. This suggests
that the primary cause of the statistically significantly worse performance found with the
epidemiological / social contagion model is in the mechanism of contagion itself, which is
probabilistic and uses a binary representation of the effect. Although the ASCRIBE model
requires setting (N 2 + N ) parameters to model N agents, even when we do away with them
by fixing openness/receptiveness and only formulaically varying channel strength, the model
produces superior results, implying that the underlying heat dissipation-style mechanism is
better-suited to the phenomenon. In actual crowd modeling, simulators could use population
averages for the parameters, as found in recent work [10,21] (instead of arbitrarily setting
them at 0.5), resulting in a simplified model with one or two global parameters similar to
‘specific heat capacities’ for people’s emotional transfer strength and one formulaic descrip-
tor of proximity’s impact. This leaves a simple, data-driven model of emotional contagion
with empirical evidence supporting its superior performance. While both models suffer from
other deficiencies (e.g., no fear paralysis), their commonality implies that our findings would
remain unchanged.

A desirable next step would be to conduct this analysis on more videos, however, data
collection remains a critical open challenge. Controlled experiments with crowds, in which
all data and parameters can be controlled, are typically not practical or ethical for phenomena
of interest such as evacuations. Videos of uncontrolled crowds, on the other hand, rarely ever
use a still camera with an aerial view. Even with clean videos, extracting the necessary data
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Table 5 Greece crowd (10
agents): average error (in pixels)
per agent during the simulation

Model Error

(a) Base models

None 1.635

ESCAPES 1.478

ASCRIBE 1.478

Durupinar 1.656

Model Error

(b) ESCAPES

Base 1.478

Decay 1.474

No speed 1.567

No prox 1.658

Variation Error

(c) ASCRIBE

Base 1.478

Decay 1.466

No speed 1.653

No prox 1.660

Model Error

(d) Durupinar

Base 1.656

No decay 1.653

Speed 1.669

Prox 1.654

must be done by hand due to the noise in the data. These issues make it extremely difficult to
calibrate model parameters with real data. However, potential solutions do exist and represent
key avenues for future research. One is to immerse people in virtual environments and use
virtual characters to substitute for the other people in a crowd. Another is to rely on the fact
that as our streets become more commonly instrumented with a range of cameras for security
and with people commonly carrying camera devices then fortuitous capturing of usable
videos may become more common. Another possibility is to extrapolate behaviors from
smaller interactions such as dyads and triads in an experimentally verifiable way. Developing
such data collection and model calibration techniques is a key open problem in simulation
research.

This work serves as a first step in addressing this challenge by presenting a technique for
setting model parameters for emotional contagion models based on real data. By comparing
against real data, we are able to hone in on the key model attributes that influence the
speed and strength of emotional contagion. Armed with a deeper understanding of emotional
contagion models, the design of virtual agents can more accurately mimic human responses to
emotional situations in their interactions with other agents as well as humans. For example,
virtual patients that understand questions and respond properly [18] will also react to the
user’s smiles, nods and other facial/vocal features to train clinicians to control the emotional
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contagion they inevitably cause. Virtual agents in emergency response simulations will not
only be able to exhibit appropriate behaviors for a trainee to view and interact with, but
also have a more accurate emotional effect on the user that will prepare him/her for the
psychological strains that will inevitably arise. Only with the comprehensive quantitative
understanding of emotional contagion that we have begun developing here will we be able
to produce truly interactive, human-like agents.
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