
Proactive Authoring for Interactive Drama:

An Author’s Assistant

Mei Si, Stacy C. Marsella, and David V. Pynadath

Information Sciences Institute
University of Southern California

Marina del Rey, CA 90292
meisi@isi.edu, marsella@isi.edu, pynadath@isi.edu

Abstract. Interactive drama allows people to participate actively in a
dynamically unfolding story, by playing a character or by exerting di-
rectorial control. One of the central challenges faced in the design of
interactive dramas is how to ensure that the author’s goals for the user’s
narrative experience are achieved in the face of the user’s actions in the
story. This challenge is especially significant when a variety of users are
expected. To address this challenge, we present an extension to Thespian,
an authoring and simulating framework for interactive dramas. Each vir-
tual character is controlled by a decision-theoretic goal driven agent. In
our previous work on Thespian, we provided a semi-automated author-
ing approach that allows authors to configure virtual characters’ goals
through specifying story paths. In this work, we extend Thespian into a
more proactive authoring framework to further reduce authoring effort.
The approach works by simulating potential users’ behaviors, generat-
ing corresponding story paths, filtering the generated paths to identify
those that seem problematic and prompting the author to verify virtual
characters’ behaviors in them. The author can correct virtual characters’
behaviors by modifying story paths. As new story paths are designed by
the author, the system incrementally adjusts virtual characters’ configu-
rations to reflect the author’s design ideas. Overall, this enables interac-
tive testing and refinement of an interactive drama. The details of this
approach will be presented in this paper, followed by preliminary results
of applying it in authoring an interactive drama.

1 Introduction

Interactive drama allows people to participate actively in a dynamically unfold-
ing story, by playing a character or by exerting directorial control. Because of
its potential for providing interesting stories as well as allowing user interaction,
it has been proposed for a wide range of training applications (e.g. [1–5]) as well
as entertainment applications (e.g. [6–11]). A variety of approaches have been
taken to build interactive dramas. These approaches can be roughly divided
into two categories, character-centric and narrative-centric designs (when speak-
ing from the agent’s perspective, they are also referred as using autonomy and
story-based agents for interactive dramas [12]). In character-centric approaches,

e.g. FearNot! [2], MRE [4], SASO [13], and Thespian [14, 3], the emphasis is on
building plausible characters. The narrative ideally emerges from the characters’
behaviors. Narrative-centric designs on the other hand focus more on the narra-
tive structure of the overall story instead of the design of individual characters.
Systems deploying this type of approach include Façade [15], Mimesis [16] and
IDA [8]. These systems employ some representations of narrative structure that
are used to control how the story unfolds.

One of the central challenges faced in the design of interactive dramas is how
to reduce authoring effort resulting from the merge of narrative and interaction.
This challenge is especially significant when a variety of users are expected.
Different users may interact with the system in very different ways. To ensure
that the desired (pedagogical and/or dramatic) effect will be experienced, or the
experience is appropriately tailored for different types of users, the system needs
to be repeatedly tested with different user behaviors. In most of the existing
systems, this step is performed by hand. However, a thorough examination by
hand is extremely time consuming and impossible in many cases. Consider a
short scene consisting of 5 rounds of interaction between a user and virtual
characters, if at each step the user has 10 reasonable moves, there are 105 possible
user action sequences or paths through the story!

To address this problem, this work discussed here presents a proactive, au-
tomated approach to assist the author in evaluating and incrementally refining
the performance of an interactive drama system. The key to our approach is
modeling types of users in order to limit the number of story paths the author
must evaluate.

The approach we take is based on extending Thespian [14, 3], a multi-agent
system for authoring and simulating interactive dramas. The user is modeled as
a decision-theoretic goal-driven agent. This allows the authoring procedure to
restrict the generation of users’ behaviors to ones that are well-motivated in the
sense that they have consistent motivations throughout the story.

This selective generation based on the well-motivated criteria can greatly re-
duce the number of possible user action sequences because it spares the author
from testing the system with user behaviors that are unlikely to happen. In addi-
tion, because it is often the case that most of the generated paths are consistent
with the author’s expectations and therefore do not need special attention, the
authoring procedure can filter story paths using either default or author defined
criteria that characterize types of stories worthy of inspection. Due to the se-
lective generation combined with the post-generation filtering, the system can
proactively prompt the author to pay attention to only a small set of paths that
are most likely to be problematic. The author’s changes to these paths can then
be passed back to Thespian to incrementally refine the story’s design.

The rest of this paper is structured as follows. Section 2 gives an overview
of Thespian’s proactive authoring procedure. Section 3 introduces the example
domain. Section 4 and 5 describe the current architecture of the Thespian system
and its extension to proactive authoring. Section 6 provides a detailed example

of applying the proactive authoring procedure. Finally, in section 7 the results
are discussed and followed by proposed future work.

2 Overview

The approach we take to proactive authoring is based on extending Thespian’s
original authoring process. The new approach exploits two aspects of Thespian’s
design. First, each story character in Thespian is modeled as a decision-theoretic,
goal-driven agent, with the character’s personality/motivations encoded as goal
preferences. Characters’ behaviors in the story, their policies of actions, are au-
tomatically generated based on these goal preferences. Second, Thespian has a
fitting algorithm that allows a character’s goal preferences to be derived auto-
matically from example story paths (in effect, sequences of character actions).
Thus, an author can provide Thespian with example story paths and then Thes-
pian can fit the behavior of the characters to perform according to those paths.

Figure 1 shows the overall structure of Thespian’s new proactive authoring
procedure. As in previous work on Thespian, the author provides story paths
to the fitting procedure in order to fit the virtual characters. The system can
then systematically simulate potential users’ behaviors interacting with the vir-
tual characters. Users are modeled as decision-theoretic agents, similar to other
Thespian characters. More importantly, the simulation is restricted to consider
only potential users whose behavior is well- motivated (See Section 5.2 for a
discussion on how we use fitting to operationalize “well-motivated”). Next, the
authoring procedure filters the story paths generated by this simulation in order
to select those that are most likely to be problematic. The resulting paths are
passed to the author. The author’s feedback can then be passed back to Thes-
pian’s fitting procedure, in the form of modified story paths, to further refine
the design of the story’s characters. This overall process can proceed iteratively
to design the interactive story.

Fig. 1. Thespian’s Proactive Authoring Procedure

3 Example Domain

The example domain of this work is a Grimms’ fairy tale, “Little Red Rid-
ing Hood”. The story contains four main characters, Little Red Riding Hood,
Granny, the hunter and the wolf. The story starts as Little Red Riding Hood
(Red) and the wolf meet each other on the outskirt of a wood while Red is on
her way to Granny’s house. The wolf has a mind to eat Red, but it dare not
because there are some wood-cutters close by. At this point, they can either have
a conversation or choose to walk away. The wolf will have a chance to eat Red
at other locations where nobody is close by. Moreover, if the wolf heard about
Granny from Red, it can even go eat her. Meanwhile, the hunter is searching the
woods for the wolf to kill it. Once the wolf is killed, people who got eaten by
it can escape. In our modeling of the story, the numbers of possible actions per
move for Red, Granny, the hunter and the wolf are 14, 2, 4, and 10 respectively.
The role of Red is assumed to be taken by the user. The user can interact with
virtual characters through a text based interface.

4 Thespian’s Current Architecture

Thespian is a multi-agent system for authoring and controlling virtual characters
in an interactive drama. It is built upon PsychSim [17], a multi-agent system
for social simulation based on Partially Observable Markov Decision Problems
(POMDPs) [18].

4.1 Thespian Agent

Thespian’s basic architecture uses POMDP based agents to control each char-
acter, with the character’s personality and motivations encoded as agent goals.
Each Thespian agent consists of five components, its state, action dynamics,
goals, policies, and beliefs about self and others.

An agent’s state is defined by a set of state features, such as its location and
degree of hunger. The values of these state features change as events (actions of
characters) happen in the story. The agent’s action dynamics define how its state
is affected by actions. An agent’s goals are expressed as a reward function over
the various state features the agent seeks to maximize or minimize. We model a
character’s personality profile as its various goals and their relative importance
(weight). For example, the wolf character can have goals of satisfying its hunger
(increasing the value of its state feature “full”) and keeping itself alive, with
the latter goal having higher importance. Thespian agents have a “Theory of
Mind” that allows them to form mental models about other agents, including
the user. An agent’s belief (subjective view) of the world includes its belief about
the state, action dynamics, goals and policies of itself and other agents and their
subjective views of the world, a form of recursive agent modeling [19]. Policies tell
the agent what to do given its current state. Currently, all agents use a bounded

lookahead policy. Following this policy, when an agent selects its next action it
projects limited steps into the future to evaluate the effect of each option. The
agent considers not just the immediate effect of an action, but also the expected
responses of other characters and, in turn, the effects of those responses, and its
reaction to those responses and so on. The agent evaluates the overall effect with
respect to its goals and then chooses the action that has the highest expected
value.

4.2 Fitting Procedure and Authoring

Thespian’s fitting procedure enables an author to define characters’ roles in a
story by creating alternative desired paths (sequences of characters’ actions) of
the story. The fitting procedure [20, 14] can tune agents’ goal weights so that
they will re-create the paths if the user behaves following the paths. When the
user deviates from the paths, the virtual characters will respond using the same
motivations fitted from the story paths.

Algorithm 1 Fit-Sequence(S0, char name, seq, fixedgoals)

1: S0 : initial state set by author at initialization
2: char name : character whose role is to be fitted
3: seq : time sequence of action - preferred path
4: fixedgoals : goals whose weights should not be changed in this process
5: C ← [] : constraint on goal weights
6: S ← S0

7: for each action A in seq do
8: if A.actor == char name then
9: # adding constraints

10: for each action a in char name.getOptions() do
11: new C ← Reward(A,S) ≥ Reward(a,S)
12: C.Append(new C)
13: # update state
14: S ← S × Dynamics(A)
15: Return AdjustGoalWeights(char name, C, fixedgoals)
16:
17: Dynamics(action) as defined in PsychSim
18: Reward(action,state) calculated similar to PsychSim, with modifications to take

turn-taking into account
19: AdjustGoalWeights(char name, constraints, fixedgoals) returns if the char-

acters’ goal weights, except the weights of the fixedgoals, can be adjusted so that
all the constraints are satisfied

In fitting, Thespian proceeds iteratively for each story path, fitting the goals
of one agent at a time and holding all other agents’ goals as fixed. Specifically, for
each story path and each character, Algorithm 1 is invoked to fit that character
so that it performs its actions in the story path. The algorithm proceeds down the

sequence of actions in the story path (Step 7). If the current action is performed
by the agent that is currently being fitted (Step 8), the fitting process simulates
the agent’s lookahead process, and automatically calculates constraints on goal
weights to ensure the desired action receives highest utility among all candidate
actions (Step 11). By the end, the constraints resulting from fitting each path
can be merged into one common constraint set. By default, in fitting, the weights
of all of the agent’s goals can be adjusted. The author can also specify a set of
goals whose weights should not be adjusted, e.g. characters should always have
a high goal weight on keeping themselves alive. Typically, there are multiple
candidate goal weight values that are consistent with the story paths defined
by the author. Any of these solutions guarantees that the characters will follow
the preferred paths of the story. Thespian will pick the goal weights as close to
the original ones as possible. When fitting results in no candidate goal weight
values, it is not possible for the characters to be motivated to behave following
all the story paths and the author has to exclude some of the paths.

5 Proactive Authoring Procedure

In this section, we will present our new proactive authoring procedure which can
help the author to examine the interactive drama system’s performance when
facing a variety of users. This procedure can systematically simulate potential
users’ behaviors, filter correspondingly generated story paths, and proactively
prompt authors to verify virtual characters’ behaviors in paths that are most
likely to be problematic. Furthermore, the author can specify the granularity of
the exploration to control the number of story paths that will be simulated as
well as criteria that determine which paths the system identifies for the author
to inspect. In particular, the author can specify the achievement (or lack of
achievement) of plot points as filtering criteria, where plot points can be defined
in terms of events in the story, and characters’ (including the user’s) beliefs or
their actual states in the story. Thus, the author can easily tell if the desired
user experience is achieved with the current configuration of virtual characters.
If it is not, the author can correct virtual characters’ behaviors by specifying
new story paths to be fitted.

5.1 Model Potential Users

Thespian models the user as a decision-theoretic goal-driven agent similar to
other characters in the story. The users’ different interaction styles are reflected
by their different preferences over the set of goals they have and their different
beliefs about other characters.

Similar to how other characters are designed, the user agent’s initial values of
state features, action dynamics and beliefs are based on the story being modeled.
Most of this information is either common-sense knowledge, e.g. social norms,
or conveyed to the user before the interaction through a back story, e.g. action

dynamics, beliefs about self and other characters. Therefore, this part of the
model is fixed for simulating all types of users unless the author purposely leaves
some information uncertain to the user, e.g. tells the user that there is 50% of
the chance that the wolf is a good character and will not eat anybody.

Though we can usually assume the user has the goals of the character which
he/she takes the role of, the user’s goals are seldom limited to the role. People
may have various personal goals, and habits to behave in certain ways, which
can be cast as goals in Thespian. Currently we consider users’ additional goals
from two possible sources. Firstly, as a member of a society, people’s behavior
usually follows social norms. In Thespian, we cast these norm-following behav-
iors of a character as goals to maximize relevant state features that keep track of
how consistent the norms and behaviors are. Secondly, people may have various
personal goals during the interaction. Curiosity is a basic human need and a
common goal in virtual environments; often a user wants to explore the environ-
ment more and converse more with the virtual characters. Table 1 lists some of
the possible user goals we model in the “Little Red Riding Hood” story. In this
example, the role of Red is assumed to be taken by the user.

Category Example Goals

Character (Role) Goals keep self alive
give cake to Granny

Social Norm Goals1 complete adjacency pair
keep appropriate conversational flow
be succinct

Personal Goals like to explore the environment
like to converse

Table 1. An Example of User’s Possible Goals

5.2 Simulate Interactions with Potential Users

This section presents Thespian’s automated approaches for simulating inter-
actions with potential users. The basic approach can exclusively generate all
possible story paths that can be encountered by a well-motivated user, a user
who has consistent motivations through out the interaction. A special case of
applying this approach is to simulate “protypical” users who have fixed sets of
goals as their prototypes. The prototypes are either designed by the author or
are derived by discretizing the user’s possible goal space. The basic approach
assumes that the user only has one possible mental model of other characters.
This can be extended to simulate users having alternative mental models.

1 Note that only a subset of the goals in Thespian’s model of social normative behaviors
apply to this domain. For detailed description of this model, see [21].

Algorithm 2 Generate-All-Paths(S0, user, fixedgoals, maxstep,
existPath)

1: S0 : initial state set by author at initialization
2: user : the name of the user character
3: fixedgoals : goals whose weights should not be changed in this process
4: maxstep : maximum number of actions the user performs
5: existPath : path that has already happened
6: for each action a in user.getOptions() do
7: pathnew ← existPath.append(a)
8: res ← Fit-Sequence(S0,user,pathnew,fixedgoals)
9: # if this is a possible path

10: if res == 1 then
11: # simulate other characters’ responses to the user’s action
12: while user does not have the next turn do
13: other character′s action ← getResponse()
14: pathnew ← pathnew.append(other character′s action)
15: maxstep new ← maxstep - 1
16: if maxstep new > 0 then
17: Generate-All-Paths(S0,user,fixedgoals,maxstep new,pathnew)
18: else
19: # this is a path we want
20: Output-to-File(pathnew)

Generate Story Paths for Well-Motivated Users Algorithm 2 shows the
pseudo code of this process. This process moves in a stepwise fashion. First, we
find all actions of the user that are well-motivated at the current state (well-
motivated actions are determined by invoking the fitting procedure as described
in section 4.2), then for each of these actions other characters’ responses are
simulated. When it is the user’s turn to act again, the same process will be
repeated until the length of story paths specified by the author is reached.

This process is implemented as a recursive function. When the function is
called to generate story paths starting from the very beginning of the story,
existPath is empty. If the author wants to simulate possible story paths starting
from the middle of the story, existPath should contain all the actions that have
already happened by that point.

Note that unlike the fitting procedure in the authoring process, in which
actions with equal utility as others are regarded as not motivated enough, the
fitting procedure in this function will treat the actions as well-motivated. The
reason for this difference is that here we want to simulate all actions the user
can possibly perform instead of ensuring certain actions will be picked by an
agent. In fact, the author can make this simulation process more tolerant to
inaccurate user modeling by passing an epsilon value to the fitting procedure to
relax the AdjustGoalWeights function (see Algorithm 1 for definition). This
way, actions will be treated as well-motivated even though their utilities are
slightly lower than the maximum utility the agent might achieve via some other
action(s).

Generate Story Paths for Protypical Users It is often sufficient and in-
teresting to test a system’s behaviors with protypical users. The prototypes can
be designed by the author. Alternatively, Thespian models protypical users by
systematically varying the user agent’s preference over its goals. The granular-
ity preference set by the author will define the fineness of the discretization.
For each set of user’s goal weights, the Generate-All-Paths procedure will be
called to generate all possible story paths with these goal weights. While calling
this process, the fixedgoals parameter needs to be set to all of the agent’s goals.
This way the AdjustGoalWeights function will only perform a test on whether
the action is motivated by the agent’s current goal weights, and will not try to
adjust the agent’s goal weights.

Generate Story Paths for Users with Alternative Mental Models To
simulate potential users with different goals and different mental models about
other characters, the author needs to supply users’ alternative mental models
in terms of beliefs about other characters’ goals and initial states. The author
can either design the alternative mental models by hand or derive them using
automated means (see [22] for a possible approach). Thespian will then set the
user agent’s belief according to each of the models (as shown in [22], the number
of distinct models in a story environment is limited), and call the Generate-All-

Paths procedure to generate all story paths that can be encountered by users
with that mental model. Finally, story paths generated by simulating users with
different mental models will be merged.

5.3 Filter Generated Story Paths

The number of story paths resulting from simulating well-motivated users may
still approach a large number. In addition, it is often the case that most of the
generated paths are consistent with the author’s expectations and therefore do
not need special attention. So Thespian has a special mechanism for selecting
story paths to present to the author.

Thespian can use both its default heuristics and author specified criteria
for filtering story paths. Currently, Thespian provides two default heuristics.
The first one picks story paths in which the virtual characters repeat the same
behaviors more than a certain percentage, e.g. 75% of the time. The second
heuristic selects story paths in which the virtual characters repeat the same
behavior continuously more than a certain number of times, e.g. 3 times. These
two heuristics are designed based on the observation that it is usually not a good
interactive experience if the virtual characters always respond to the user with
the same actions. Both heuristics are configurable by the author. The author
can specify the names of the characters to be watched for (by default all the
virtual characters’ behaviors will be included in the analysis), the thresholds for
reporting, e.g. instead of 75% the threshold can be lowered to 60% for the first
heuristics, and the actions to be watched for, e.g. paths will be selected only if
the wolf repeats “do nothing” all the time. In addition to the default heuristics,

the author can specify the achievement (or lack of achievement) of plot points
as additional filtering criteria. Plot points can be defined in terms of events in
the story, e.g. pulling out story paths in which the wolf eats Granny and is not
killed by the end, and characters’ (including the user’s) beliefs or their actual
states in the story, e.g. pulling out story paths in which Red believes she has a
close social distance with the wolf by the end. The paths selected by different
criteria often overlap with each other. As the last step, the filtering procedure
will merge paths selected by all the criteria and present the distinct paths to the
author.

To complete the authoring process, the author needs to review the paths
being selected, and make modifications to them (correct virtual characters’ be-
haviors) if the paths are different from his/her expectations. For example, in one
of the paths generated in the examples given in Section 6, the hunter arrives at
the place where Red and the wolf are. The hunter would have killed the wolf, but
Red keeps on talking to him. While the hunter is entrapped in the conversation
with Red, the wolf runs away. The author may want to design a new story path
that forces the hunter to kill the wolf instead of talking to Red in that situa-
tion. Next, the newly corrected story paths together with the originally designed
story paths are passed to the Fit-Sequence function to reconfigure the virtual
characters. When necessary, additionally rounds of evaluation (by simulating
potential user’s behaviors) and reconfiguration of the virtual characters can be
iteratively performed.

6 Example Authoring Process

This section provides an example of using the proactive authoring approach to
facilitate the design of an interactive drama, the story of Red Riding Hood.

Step 1: Tune characters’ goals to story paths specified by the author. The follow-
ing story path is passed to the Fit-Sequence function. Sentences in parentheses
describe the status of the story that can not be seen easily from the characters’
actions.

Red greets the wolf. − > the wolf greets back. − > Red tells the wolf that she
is on her way to visit Granny. − > the wolf says bye to Red. − > Red says bye
to the wolf. − > Both Red and the wolf walk away. − > (Red and the wolf meet
outside of Granny’s house) the wolf eats Granny. − > (the hunter arrives) the
hunter kills the wolf. − > Granny escapes from the wolf.

Step 2: Simulate potential users’ behaviors. To demonstrate simulating users
with alternative mental models of other characters, we assume the users are in-
formed that in this story the wolf might be a good character and will never eat
people. These users might have this mental model or the default mental model of
the wolf being evil. Thespian generated all possible story paths that can be en-
countered by users with 5 rounds of interaction. In addition, Thespian simulated

protypical users’ behaviors. Due to space limitation, only the results of simulat-
ing the following two prototypes are listed in Table 3: the user has a dominant
goal of giving the cake to Granny and the user has a dominant goal of NOT
giving the cake to Granny (This is the case that the user does not adapt the
character’s goals). When simulating each of these prototypes, the user agent’s
other goal weights are set to the results of fitting to the story path described
above.

Step 3: Filter the generated story paths and present to the author. When filter-
ing the paths to present to the author, the wolf is selected as the only character
to be examined because in this story both the hunter and Granny are expected
to have repeated actions, e.g. the hunter moves around searching for the wolf all
the time. In addition to the default filtering heuristics, we define the achievement
of the following plot point as a filtering criterion: the wolf eats Granny and is
not killed by the end. The summaries of results are given in Table 2 and Table 3.
Note that by letting the user play RED, the total number of paths in the story
is 145!

Mental model Possible paths Selected by heuristics Selected by plot point

the wolf is good 2456 181 72

the wolf is evil 1837 95 56
Table 2. Results of simulating users with alternative mental models

Mental model Want Granny
to have cake

Possible paths Selected by
heuristics

Selected by
plot point

the wolf is good Yes 1688 98 68

the wolf is good Opposite 2318 175 72

the wolf is evil Yes 1513 86 56

the wolf is evil Opposite 1729 92 56
Table 3. Results of simulating protypical users

7 Discussion and Future Work

Though we have not formally evaluated this proactive authoring procedure, the
numbers reported in Section 6 are very informative. In this domain, simulating
a 5-round interaction with a well-motivated user results in thousands of possible
story paths. Though these numbers are already dramatically smaller than the
total number of paths (145), it is still impossible for a human author to exam
each of these paths. Fortunately, the filtering process further cuts the numbers

of paths that need to be reviewed into about 1/10 of all the paths that have
been generated, and allows the author to specify his/her own filtering criteria
using plot points. The numbers being reported here are story dependent and
filtering criteria dependent. Nevertheless we feel this proactive authoring pro-
cedure is potentially a very helpful tool for evaluating and refining the design
of an interactive drama. It enables automatic testing of the performance of the
interactive drama, and the author only needs to pay attention to a limited set
of story paths that are likely to be problematic. It is also worth mentioning that
by extensively testing the virtual characters’ behaviors, the modeling deficits in
the virtual characters are also more easily revealed.

On the other hand, this authoring procedure is still at its early stage. We
currently foresee three parts in future work. Firstly, we plan to build richer
syntax which allows the author to specify more complex filtering criteria, e.g.
a partial order of events is violated. Secondly, we seek to find more efficient
automatic and domain independent algorithms for identifying potentially prob-
lematic story paths and assigning priorities to paths that need to be reviewed.
These algorithms can help authors who are not familiar with a domain to start
authoring. Finally, the current fitting procedure in Thespian can only fit charac-
ters’ motivations to sequences of actions. As plot points can be specified in terms
of not only actions (events), but also characters’ beliefs, and actual states, we
plan to extend the fitting procedure to enable automated character configuration
using this information.

8 Conclusion

In this paper, we made our initial movement towards building a proactive au-
thoring procedure within the Thespian framework. The proactive authoring pro-
cedure presented in this paper can automatically generate story paths that can
be encountered by a well-motivated user, who may have alternative mental mod-
els about other characters. The authoring procedure can also simulate protypical
users’ behaviors. Further, the story paths generated by simulating potential users
are filtered before being presented to the author, so that the author only needs to
pay attention to paths identified as problematic. Two default, but configurable
filtering heuristics are provided by Thespian. In addition, the author can specify
the achievement (or lack of achievement) of plot points as filtering criteria. Fi-
nally, the author’s feedback will be used to fine tune the virtual characters. This
approach can reduce authoring effort resulting from open-ended user interaction.
Especially, it can help the author design interactive dramas for a wide range of
users for either ensuring the same desired effect will be experienced in all types
of users, or tailoring the experience for different types of users.

Acknowledgments

We thank our colleagues, especially John Gratch, Mark Riedl, Bill Swartout for
their support and thoughtful discussions.

References

1. Marsella, S.C., Johnson, W.L., Labore, C.: Interactive pedagogical drama for
health interventions. In: AIED. (2003)

2. Paiva, A., Dias, J., Sobral, D., Aylett, R., Sobreperez, P., Woods, S., Zoll, C.:
Caring for agents and agents that care: Building empathic relations with synthetic
agents. In: AAMAS. (2004) 194–201

3. Si, M., Marsella, S.C., Pynadath, D.V.: Thespian: An architecture for interactive
pedagogical drama. In: AIED. (2005)

4. Swartout, W., Hill, R., Gratch, J., Johnson, W., Kyriakakis, C., LaBore, C., Lind-
heim, R., Marsella, S.C., Miraglia, D., Moore, B., Morie, J., Rickel, J., Thiúbaux,
M., Tuch, L., Whitney, R., Douglas, J.: Toward the holodeck: Integrating graphics,
sound, character and story. In: Agents. (2001) 409–416

5. Riedl, M.O., Andrew, S.: Believable agents and intelligent scenario direction for
social and cultural leadership training. In: the 15th Conference on Behavior Rep-
resentation in Modeling and Simulation, Baltimore, Maryland (2006)

6. Riedl, M.O., Saretto, C.J., Young, R.M.: Managing interaction between users and
agents in a multi-agent storytelling environment. In: AAMAS. (2003) 741–748

7. Cavazza, M., Charles, F., Mead, S.J.: Agents’ interaction in virtual storytelling. In:
Proceedings of the International WorkShop on Intelligent Virtual Agents. (2001)
156–170

8. Magerko, B.: Story representation and interactive drama. In: Artificial Intelligence
and Interactive Digital Entertainment (AIIDE), Marina del Rey, CA (2005)

9. Louchart, S., Aylett, R.: The emergent narrative theoretical investigation. In: the
2004 Conference on Narrative and Interactive Learning Environments. (2004)

10. Szilas, N.: IDtension: a narrative engine for interactive drama. In: the 1st Interna-
tional Conference on Technologies for Interactive Digital Storytelling and Enter-
tainment, Darmstadt Germany (2003)

11. Braun, N.: Storytelling in collaborative augmented reality environments. In: Pro-
ceedings of the 11th International Conference in Central Europe on Computer
Graphics, Visualization and Computer Vision. (2003)

12. Mateas, M., Stern, A.: Towards integrating plot and character for interactive
drama. In: Working notes of the Social Intelligent Agents: The Human in the
Loop Symposium. AAAI Fall Symposium Series. (2000)

13. Traum, D.R., Swartout, W., Marsella, S.C., Gratch, J.: Fight, flight, or negotiate:
Believable strategies for conversing under crisis. In: IVA. (2005)

14. Si, M., Marsella, S.C., Pynadath, D.V.: Thespian: Using multi-agent fitting to
craft interactive drama. In: AAMAS. (2005) 21–28

15. Mateas, M., Stern, A.: Integrating plot, character and natural language processing
in the interactive drama Façade. In: the International Conference on Technologies
for Interactive Digital Storytelling and Entertainment. (2003)

16. Young, R.M., Riedl, M.O., Branly, M., Jhala, A.H., Martin, R.J., Saretto, C.J.: An
architecture for integrating plan-based behavior generation with interactive game
environments. In: Journal of Game Development. (2004)

17. Marsella, S.C., Pynadath, D.V., Read, S.J.: PsychSim: Agent-based modeling of
social interactions and influence. In: Proceedings of the International Conference
on Cognitive Modeling. (2004) 243–248

18. Smallwood, R.D., Sondik, E.J.: The optimal control of partially observable Markov
processes over a finite horizon. Operations Research 21 (1973) 1071–1088

19. Gmytrasiewicz, P., Durfee, E.: A rigorous, operational formalization of recursive
modeling. In: ICMAS. (1995) 125–132

20. Pynadath, D.V., Marsella, S.C.: Fitting and compilation of multiagent models
through piecewise linear functions. In: AAMAS. (2004) 1197–1204

21. Si, M., Marsella, S.C., Pynadath, D.V.: Thespian: Modeling socially normative
behavior in a decision-theoretic framework. In: IVA. (2006)

22. Pynadath, D.V., Marsella, S.C.: Minimal mental models. In: AAAI. (2007)

