
Integrating Story-Centric and Character-Centric
Processes for Authoring Interactive Drama

Mei Si1, Stacy C. Marsella1 and Mark O. Riedl2

1Information Sciences Institute, University of Southern California

2School of Interactive Computing, College of Computing, Georgia Institute of Technology
{meisi, marsella}@isi.edu; riedl@cc.gatech.edu

Abstract
Computer aided interactive drama has been widely applied
for entertainment and pedagogy. Most existing approaches
for authoring interactive drama use either story-centric or
character-centric processes. In this work, we present a new
framework that integrates both types of processes to support
authoring. This framework uses a multi-agent system to
control virtual characters in a story. The characters’
motivations are encoded as the agents’ goals, and are
configured based on well-structured story paths generated
using a partial order planner. This framework allows the use
of a planner that models the story at a more abstract level
than the multi-agent system, and thus avoids the effort of
building equivalent models of the story using both the
planner and the multi-agent system. We explore the use of
this new framework for authoring interactive dramas.
Preliminary examples of application are presented.

Introduction
Computer aided interactive drama allows the user to
actively participate in a story, by playing a role or applying
directorial control over the characters in the virtual world.
The user’s choices affect the unfolding of the story.
Compared to traditional drama, the integration of narrative
and interactivity enables interactive drama to create richer
and more engaging experience. Therefore, it has been
widely applied for providing both pedagogy (e.g. Louchart
& Aylett 2004; Traum et al., 2005; Si et al., 2005; Riedl et
al., 2008) and entertainment (e.g. Cavazza et al., 2001;
Mateas & Stern, 2003; Szilas, 2003; Braun, 2003; Young
et al., 2004; Magerko, 2005).
 One of the central challenges faced in the design of
interactive drama is how to reduce authoring effort
resulting from the merge of interactivity and narrative.
Unlike traditional drama, in which only a single story line
is presented to the user, interactive drama allows the user
to interact with the virtual characters. Authoring enough
contingencies to create a richly interactive environment for
an engaging experience is often intractable to human
authors (Riedl & Young, 2006).

Copyright © 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

 To address this challenge, various authoring frameworks
have been designed for facilitating human author’s creation
of interactive dramas. Many of these authoring frameworks
adopt approaches inspired by theories of what makes a
good story. In Poetics, Aristotle argued that character was
subsidiary to action. A more contemporary view on
character and action, as espoused by Lajos Egri (Egri,
1949), suggests that plot unfolds based on the characters,
that characters can essentially “plot their own story”.
Corresponding to the above theories, story-centric
processes (e.g. Mateas & Stern, 2003; Szilas, 2003; Braun,
2003; Young et al., 2004; Magerko, 2005; Riedl et al.,
2008) for interactive drama focus on the structure of the
overall story in terms of plot arc, and aim at providing
automated approaches for arranging events to happen
during the interaction to form a well-structured story.
Character-centric processes (e.g. Cavazza et al., 2001;
Louchart & Aylett, 2004; Traum et al., 2005; Si et al.,
2005), on the other hand, emphasize the development of
individually plausible, autonomously motivated characters
that the user can interact with.

In this work, we present a new framework that integrates
story-centric and character-centric processes for authoring
interactive dramas. This new framework integrates a partial
order planner (POP), which has often been used in story-
centric processes, with the Thespian system (Si et al.,
2005), which mainly uses a character-centric approach.
The details of the integration are provided in this paper,
followed by preliminary examples of human author
interacting with the framework to author an interactive
drama.

Example Domain
The example domain of this work is a Grimms’ fairy tale,
“Little Red Riding Hood’’. The story starts as Little Red
Riding Hood (Red) and the wolf meet each other on the
outskirt of a wood while Red is on her way to Granny’s
house. The wolf has a mind to eat Red, but it dares not
because there are some wood-cutters close by. The wolf
will eat Red at other locations where nobody is around.
Moreover, if the wolf hears about Granny from Red, it will
even go eat her. Meanwhile, the hunter is searching the

wood for the wolf. Once the wolf is killed, people who
were eaten by it can escape.

Overview of the Framework
This new framework integrates a POP planer with
Thespian system for facilitating the author in creating
interactive dramas.
 POP planners have often been used in story-centric
authoring processes (Young et al. 2004; Riedl et al. 2008)
because they can automatically generate sequences of the
characters’ actions – plans to reach story goals and at the
same time ensure plausible causal relationship among
events in the plan. However, such plans do not provide the
author insight about the characters’ motivations, and
therefore cannot avoid creating inconsistent character
motivations during the interaction.

Figure 1. Overview of the New Framework

 Thespian (Si et al., 2005) on the other hand mainly
adopts a character-centric approach and can ensure
consistent characters’ motivations during the interaction. It
uses decision-theoretic goal-driven agents to control virtual
characters. The characters’ motivations are encoded as the
agents’ goals. Thespian provides an automated fitting
procedure which can tune virtual characters’ motivations to
a set of story paths (sequences of the characters’ actions).
The resulting virtual characters will recreate their roles
when the user’s actions are the same as specified in the
story paths. When the user deviates from the story paths,
the characters will respond to the user using the
motivations “learned’’ from the story path fitting process.
However, deviation from the author designed paths risks
the interaction being a not well-structured story. To
account for this, the author often needs to design multiple
story paths for configuring virtual characters.
 In this new framework, we use a planner to partially
automate the story path designing process. The author
works with the planner to construct story outlines –
represented as plans – and the plans are then used to
provide guidelines for configuring Thespian agents, which
are later used for interacting with the users. To avoid the
effort of constructing an equivalent model of the story in
the planner as that in Thespian, this framework allows the
use of a planner that models only major events (plot points)
of the story. The framework provides a procedure that can
tune Thespian agents’ motivations to plot level plans.
 Figure 1 lays out the overall authoring process of this
framework. The authoring process starts with the author
using the planner to produce one or more plot level
skeletons (plans) of the story. The author does so by
providing specifications for what they would like to see in
the plot. For example, the author might specify that Granny
is eaten by the wolf. The planner responds by generating a
plan such as: Red walks to Granny’s cottage, Red tells the
wolf about Granny and then the wolf eats Granny.
 Next the system works with the author to elaborate the
plot level plan into a full story path. Since the Thespian
agents may model the story with more detailed
interactions, their motivations may not be directly fitted to

the plot level plan, e.g. there is no feasible motivation for
Red to tell the wolf about Granny as soon as they meet. In
this case, the system first tries to fill in moment-to-moment
interactions between the two plot points, such as a small
talk between Red and the wolf to build rapport. If the
system cannot find appropriate interactions or the author
does not like the suggested interactions, the system may
take initiative in authoring and propose new actions to be
modeled in Thespian agents, e.g. an action that can make
Red believe that the wolf is trust worthy. The system can
only suggest the effects of the actions, and the author needs
to respond by inventing the actions, e.g. a wood-cutter tells
Red that the wolf is trustable.
 Finally, Thespian agents “learn” their motivations from
the full story path and any other paths designed previously
by the author or the system, and interact with users.

Implementation
In this section, we introduce the Thespian system, and its
integration with a POP planner. A standard POP planner is
assumed to be used, so no detail about the planner is
included in this paper.

Thespian
Thespian is a multi-agent system for authoring and
controlling virtual characters in interactive dramas. It is
built upon PsychSim (Marsella et al., 2004), a multi-agent
system for social simulation. In this section, we introduce
components in Thespian that are relevant to this work.
Thespian Agent
Thespian’s basic architecture uses POMDP (Smallwood &
Sondik 1973) based agents to control each character, with
the character’s motivations encoded as agent goals. Each
agent is defined by its state, action, action dynamics, goals,
policies, and beliefs about self and others.
 An agent’s state is defined by a set of state features,
such as its name and location. The agent’s actions are the

same as the actions of the character in the story world, such
as talking to other characters and moving around. The
agent’s action dynamics define how its state is affected by
events (actions of characters) happen in the story. The
goals of an agent are expressed as a reward function over
the various state features the agent seeks to maximize or
minimize. For example, the wolf character may have goals
of satisfying its hunger and keeping itself alive, with the
latter one having much higher importance. Agents have
recursive beliefs about self and others, e.g. the wolf’s
belief about the hunter’s belief about itself. This forms a
model of theory of mind. This model enables Thespian
agents to reason about other characters’ reactions when
planning on their own behaviors. Currently, all agents use
a bounded lookahead policy to decide their actions -- it
projects limited steps into the future to evaluate the utility
of each action option. The agent considers not just the
immediate effect of an action, but also the expected
responses of other characters and, in turn, its reaction to
those responses and so on. The agent evaluates the overall
utility with respect to its goals and then chooses the action
that has the highest expected utility. For example, the wolf
chooses to talk to Red instead of eating her because it
foresees the outcome of being killed by the wood-cutter
after eating Red, and the goal of being alive is far more
important for it than keeping itself from being hungry.
“Fitting” Procedure and “Suggest” Procedure
“Fitting” and “suggest” are two procedures provided by
Thespian to help the author design virtual characters which
will behave in a certain (desired) way.
 The fitting procedure enables an author to configure
virtual characters’ goals by creating alternative paths of the
story. It configures each virtual character separately. For
each virtual character, it judges if consistent motivations
can be inferred from the story paths – whether there is a set
of goal weights that can motivate the agent to behave as
specified in the story paths. If the answer is yes, it sets the
agent’s goal weights to that solution, and otherwise
informs the author of the failure. See (Pynadath &
Marsella, 2004; Si et al., 2005) for details.
 “Suggest” is a procedure provided by PsychSim. This
procedure can suggest belief changes to an agent (without
affecting the agent’s goals) so that it will prefer the
author’s desired choice of action over its original choice.
For example, to make the wolf not eating Granny, the
“suggest” procedure may give the following solution:
make the wolf believe that it is not hungry (instead of
being hungry). The author then needs to arrange an event,
which can create the belief change, to happen in the story
before the wolf needs to make its decision about eating
Granny. Currently this procedure assumes that the agent
can expect others to always react to its actions the same
way regardless of its belief changes, e.g. no matter how the
wolf’s belief changes, it always expects to be killed by the
wood-cutter if it eats Red (this expectation is formed when
the agent did its lookahead reasoning with its original
beliefs). This is not always appropriate. For example, if the
wolf changes its belief to that the wood-cutter is not close

by it does not need to worry about being killed. In section
Implementation, Algorithm 5 extends the “suggest”
procedure to consider this situation.

Elaborate Plot Level Plan into Full Story Path
In this framework, we replace the hand authored story
paths in Thespian’s authoring procedure with story paths
generated by a planner, and use plans to provide guidance
for virtual characters’ behaviors. It is straightforward to
tune Thespian agents’ motivations to plans generated at the
same detail level as that used by Thespian model; the
fitting procedure can be directly called. When configuring
Thespian agents to behave according to plot level plans,
each plan is first elaborated into a full story path. The
Thespian agents are then fitted to these story paths and any
additional ones designed by the author or the system. This
section presents the algorithms for elaborating a plot level
plan into a full story path.
Identify “Gaps” in a Plan
When a plan is passed to Thespian, no special tag is needed
to indicate whether it is a plot level plan. Instead, the
system uses automated procedures to find out if there are
moment-to-moment interactions missing from the plan. In
other words, whether there is a “gap” in the plan. If the
answer is yes, the next step is to determine what actions
should be inserted into the plan and where they should be
inserted. This information is returned to the author as
feedback. These steps may need to be repeated multiple
times until all the gaps in the plan are filled. Algorithm 1 is
used for locating the first gap in a plan.

Algorithm 1 Identify_Gap (plan)
1. If fit (plan [1: len(plan)]):
2. Return -1
3. Else:
4. For i = 1: len(plan):
5. If ~fit (plan[1:i]):
6. Break
7. Return i

Algorithm 2 Fit (seq)
1. For character in story:
2. If fit_sequence(character,seq) == False:
3. Return False
4. Return True

Algorithm 1 first tries to treat the entire plan as a regular

story path. If virtual characters can be successfully fitted to
the plan, it is suggested that the planner models the story at
the same level as Thespian, and no further actions need to
be taken. Otherwise, this algorithm progresses stepwise to
find the first gap in the plan. Starting with i equals to 1, it
fits the virtual characters to the first i actions in the plan. If
it succeeds, it fits the virtual characters to the first i+1
actions in the plan. When fitting fails, we know that there
is a gap around the ith action and the i+1th action in the
plan, and additional actions need to be inserted either
between these two actions or before the ith action. For

example, the plan passed to Thespian may be: Red walks
to Granny’s cottage, Red tells the wolf about Granny …
When fitting Thespian agents to this plan, the agent that
controls Red can be fitted to the first action, but not the
first two actions. Therefore, a gap is found. The fit function
used in Algorithm 1 is defined in Algorithm 2. It calls the
fitting procedure in Thespian and fits all the characters in
the story to a sequence of actions, and only returns true if
all the characters can be successfully fitted.
Fill Gap
When a gap occurs in the plan and needs to be filled with
moment-to-moment interactions, usually the solution is not
limited to a unique one. Further, different ways of filling
the gap shapes the resulting story path and the Thespian
agents, which will be used to interact with the user,
differently. For example, the simplest way to fill the gap,
that Red will not tell the wolf information about Granny
when they first meet, is to add small talk between Red and
the wolf. The small talk will gradually build rapport
between the two characters. Alternatively, more complex
stories can be made, such as a wood-cutter happens to pass
by and he convinces Red that the wolf is a good friend.

In this new framework, the author is given freedom to
specify which actions to use for filling a gap, and their
priorities. Upon the identification of a gap, the system
automatically divides virtual characters’ actions into three
categories based on how much the action can potentially
change the story when used for filling the gap. The first
category contains small talk actions that involve only the
characters related to gap. The characters related to the gap
are those who act right before or after the gap, e.g. Red and
the wolf in the previous example. The second category
contains these characters’ other actions, such as talking to
other characters and moving around. The third category
contains other characters’ actions, such as the wood-
cutter’s actions. Adding small talk actions between related
characters affect the story least, because small talk is most
likely to be omitted when modeling a story at an abstract
level; and it is assumed that unrelated characters’ actions
can potentially change the story most dramatically.

In addition to what actions can be used for elaborating
the plot level plan, the location of the inserted interactions,
e.g. within or right before the gap vs. several steps before
the gap, and the length of the inserted interactions also
affect the difference between the resulting story path and
the original plot level plan. Algorithm 3 & 4 give the
pseudo code for filling gaps based on these parameters.

As shown in Algorithm 3, the plot level plan is first cut
into three parts. Path0 contains the sequence of actions
before the gap. Islands contain the two actions around the
gap and the n actions that immediately precede the gap.
The basic idea is to replace islands with detailed moment-
to-moment interactions; all the actions in islands need to
be included in the final story path with their original order
kept. This way, moment-to-moment interactions are
inserted between the events in islands. Finally, the third
part of the plan is the sequence of actions that happen after
the gap. Currently they do not affect how the gap is filled.

Algorithm 3 Fill_Gap (plan, i, allActionSets, n=0, maxLength)
1: # i: location of the gap in plan
2: # allActionSets: sets of actions to be used. The sets are ordered in

descending priorities.
3: # n: the starting location for filling
4: # maxLength: maximum length of interaction allowed

5: res ← False
6: path0 ← plan[0, i- n]
7: islands ← plan[i- n, i+2]
8: actionSet ← allActionSets [0]

9: res ← replace_islands (path0, islands, actionSet, maxLength)
10: If res == False:
11: For newActions in allActionSets [1:]:
12: actionSet ← actionSet + newActions
13: res ← replace_islands (path0, islands, actionSet,

maxLength)
14: If res == True:
15: Break
16: Return res

Algorithm 4 Replace_Islands (path0, islands, actionSet, maxLength)
1: res ← False
2: For action in actionSet:
3: path ← copy(path0)
4: path ← path + action
5: If checkOrder(path, islands):
6: If checkComplete(path, islands):
7: res ← fit (path)
8: If res == True:
9: Return True
10: Else:
11: maxLength ← maxLength -1
12: If maxLength >= 0:
13: res ← replace_islands (path, islands,

actionSet, maxLength)
14: If res == True:
15: Return res
16: Return res

17: # checkOrder(path, islands): returns if the order of actions in islands

is retained in path. Only applies to those actions appear in path.
18: # checkComplete(path, islands): returns if each action in islands is

included in path

The author can indicate the sets of actions to be

considered for filling the gap with priorities using the
allActionSets parameter. Initially only the set with highest
priority is used (line 8 in Algorithm 3). If it fails to fill the
gap, the set of actions with next highest priority will be
added for consideration (line 11-12 in Algorithm 3).

Algorithm 4 illustrates how actions are taken from the
allowed action sets (actionSets) and combined together to
replace islands in the plan. As actions are appended one by
one to the end of Path0 (line 4 in Algorithm 4), the
function keeps on checking if the story path satisfies the
basic requirements for replacement – all actions in islands
are included in the story path with their original order (line
5-6 in Algorithm 4). If the story path passes this checking,
the function will try to fit virtual characters to the story
path (line 7 in Algorithm 4). If fitting succeeds, the gap is
successfully filled. In the worst case, this recursive
function will try all the combinations of actions from

actionSets where the length of the sequence is equal to or
less than maxLength.

Algorithm 5 Suggest_Belief_Changes (plan, i)
1: # i: location of the gap in plan
2: actor ← the agent who performs the action plan [i+1]
3: options ← []

4: simulate the story until the ith step of the plan
5: options ← options + Suggest_Pick (actor, plan [i+1])

6: For other in story:
7: For otherAct in other.actionOptions():
8: If lookahead (actor, other, otherAct) == plan [i+1]:
9: simulate actor performs the action plan [i+1]
10: options ← options + Suggest_Pick (other, otherAct)
11: Return options

12: # Suggest_Pick (actor, action): returns necessary changes to the
 actor’s beliefs so that the actor will pick action over all other choices
13: # lookahead (actor, other, otherAct): returns actor’s choice after
 lookahead with the expectation of other’s response being otherAct

It is possible that Algorithm 3 fails to fill the gap. In this

case, just using actions that have already been modeled in
Thespian is not enough to recreate the story laid out by the
planner. The system can take initiative in authoring by
suggesting new actions to be included in Thespian’s model
for filling the gap. Algorithm 5 illustrates this process.

Algorithm 5 extends the “suggest” procedure in
Thespian / PsychSim. It first simulates the story until the ith
action of the plan, where the gap happens. Actor is the
agent who will act next. At line 5, Algorithm 5 identifies
belief changes that if happen actor will select the i+1th
action in the plan as its next step. Further, Algorithm 5
considers the case that actor’s choice is affected by its
expectations of other characters’ responses. For each
potential response from other characters (line 6-7 in
Algorithm 5), if actor will choose the desired action when
expecting that response (line 8 in Algorithm 5), Algorithm
5 proceeds and finds out necessary belief changes if any
that will lead the character to make the response (line 10 in
Algorithm 5). The pseudo code in Algorithm 5 illustrates
considering the actor’s anticipation of other characters’
responses using one step lookahead. It is straightforward to
extend the pseudo code for more steps of lookahead.

After belief changes are proposed by the system, the
author needs to respond by creating corresponding actions
that can result in the belief changes. This process often
generates interesting and creative ideas. An example is
given in the next section.

Authoring Examples
In this section, two examples of using this new framework
to author the Red Riding Hood story are provided1. Both

1 For better readability, the examples are given using the actual sentences
in the story instead of speech acts, which are used by the system for
reasoning internally.

examples start with the plot level plan and demonstrate
how the framework interacts with the author to configure
Thespian agents.

Example 1
This example demonstrates how small talk actions can be
used to turn a plot level plan into a complete story path.
The planner produced the following plan.
1. The wolf comes to Red (on the road).
2. Wolf: where are you going?
3. Red: I am going to Granny’s house to give her this cake.
4. …
 The system applied Algorithm 2 and found a gap
between the wolf’s enquiry and Red’s reply. Next, the
system tried to fill the gap using only small talk actions
and succeeded. The following story path was generated
and returned to the author as feedback. The Thespian
agents’ motivations were also tuned to this story path.
1. The wolf comes to Red (on the road).
2. Wolf: hello!
3. Red: hello!
4. Wolf: how are you?
5. Red: I am doing well.
6. Wolf: where are you going?
7. Red: I am going to Granny’s house to give her this cake.
 The author approved the generated path and the system
proceeded to identify the next gap in the plan.

Example 2
This example demonstrates how belief changes in
characters are suggested for linking plot points in the plan;
and how these belief changes can be turned into novel
actions of Thespian agents.

 The plot level plan indicates that the following scenario
should happen after the wolf eats Granny in the cottage.
1. Red comes to the door.
2. Red enters the cottage.
3. The wolf eats Red.
 The system applied Algorithm 2 and found there is a gap
between “Red enters the cottage” and the previous step if
Red knows the wolf is inside. The system then tried to fill
the gap using all the modeled actions and found only one
solution: the wolf leaves the cottage before Red enters.
However, the author disapproved this solution because
they foresee that it will make the later action – the wolf
eats Red (in the cottage) – impossible to happen. Next, the
system applied Algorithm 5 and got the following results:
• Red believes that it is Granny who is inside
• Red believes that the wolf is somewhere else
• Red believe that the wolf is full
• Red believes that the wolf thinks she is dead (the logic

behind this is that the wolf will not eat a dead person).

 Each of these belief changes can make Red expect to not
be eaten after entering the cottage and therefore enters the
door. Based on these suggestions, the author designed
several new actions, including “the wolf disguises itself as
Granny”, “the wolf pretends it is leaving” and “the wolf
eats food in Granny’s kitchen”. These actions were added
to Thespian agents’ models and the system tried to fill the
gap again. The following final story path was generated:
1. The wolf disguises itself as Granny.
2. Red comes to the door.
3. Red enters the cottage.
4. The wolf eats Red.

Discussion and Future Work
In the examples shown above, the gaps are filled
independently, i.e. we did not consider how the filling of a
gap affects the difficulty of filling latter gaps in the plan.
For future work, we plan on enhancing the plan elaboration
process by taking dependencies among gaps into
considerations.

The framework has been fully implemented, but we
have only used it to author one interactive drama. In this
story, the main characters (Red and the wolf) have around
10 different action choices and other characters have 3-4
action choices. In the future, we are interested to exam how
this framework works in a more complex domain.

Conclusion
In this paper, we present a framework that integrates story-
centric and character-centric processes for facilitating the
human author in creating interactive drama. This
framework is implemented by using story paths generated
by a POP planner for configuring Thespian’s goal-based
agents. The automation in story path generation makes it
easier to provide multiple well-structured story paths for
fitting Thespian agents; and with more training examples,
we can expect a better chance of the user experiencing a
well-structured story when interacting with the virtual
characters. This framework allows the use of a planner that
models the story at a more abstract level than Thespian.
This saves the author effort of building an equivalent
model of the story in the planner as that in Thespian, and
thus enables the author to quickly sketch the interactive
experience (using the planner).

References
Braun, N. 2003. Storytelling in collaborative augmented
reality environments. In Proceedings of the 11th
International Conference in Central Europe on Computer
Graphics, Visualization and Computer Vision.
Cavazza, M., Charles, F., and Mead, S.J. 2001. Agents’
interaction in virtual storytelling. In Proceedings of the
International Workshop on Intelligent Virtual Agents.

Egri, L. 1949. The Art of Dramatic Writing. Simon &
Schuster: New York.
Louchart, S., and Aylett, R. 2004. The emergent narrative
theoretical investigation. In Proceedings of the 2004
Conference on Narrative and Interactive Learning
Environments.
Magerko, B. 2005. Story representation and interactive
drama. In Proceedings of the 1st Conference on AI and
Interactive Digital Entertainment.
Marsella, S.C., Pynadath, D.V., and Read, S.J. 2004.
PsychSim: Agent-based modeling of social interactions
and influence. In Proceedings of the International
Conference on Cognitive Modeling, 243–248.
Mateas, M., and Stern, A. 2003. Integrating plot, character
and natural language processing in the interactive drama
Façade. In Proceedings of the 1st International Conference
on Technologies for Interactive Digital Storytelling and
Entertainment, Darmstadt Germany.

Pynadath, D.V. and Marsella, S.C. 2004. Fitting and
Compilation of Multiagent Models through Piecewise
Linear Functions. In AAMAS.

Riedl, M.O. and Young, R.M. 2006. From Linear Story
Generation to Branching Story Graphs. IEEE Computer
Graphics and Applications, 26(3).

Riedl, M.O., Stern, A., Dini, D., and Alderman, J. 2008.
Dynamic Experience Management in Virtual Worlds for
Entertainment, Education, and Training. International
Transactions on Systems Science and Applications, Special
Issue on Agent Based Systems for Human Learning, 4(2).

Si, M., Marsella, S.C., and Pynadath, D.V. 2005.
THESPIAN: An Architecture for Interactive Pedagogical
Drama. In AIED.
Smallwood, R.D., and Sondik, E.J. 1973. The optimal
control of partially observable Markov processes over a
finite horizon. Operations Research, 21:1071–1088.
Szilas, N. 2003. IDtension: a narrative engine for
interactive drama. In Proceedings of the 1st International
Conference on Technologies for Interactive Digital
Storytelling and Entertainment, Darmstadt Germany.
Traum, D.R., Swartout, W., Marsella, S.C., and Gratch, J.
2005. Fight, flight, or negotiate: Believable strategies for
conversing under crisis. In: IVA.
Young, R.M., Riedl, M.O., Branly, M., Jhala, A., Martin,
R.J., and Saretto, C.J. 2004. An Architecture for
Integrating Plan-Based Behavior Generation with
Interactive Game Environments. Journal of Game
Development, 1, 51-70.

