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arts, politics, and, more recently, computer science and robotics. Gesture is a criti­
cal tool to enrich face-to-face communication, of which social artificial agents have 

yet to take full advantage. In this chapter, we discuss the importance, selection, pro­
duction, challenges, and future of co-speech gestures for artificial social intelligent 
agents. 

Gesture Generation
 
Carolyn Saund and Stacy Marsella 

Gestures accompany our speech in ways that punctuate, augment, substitute for, 
and even contradict verbal information. Such co-speech gestures draw listeners’ 
attention to specific phrases, indicate the speaker’s feelings toward a subject, or 
even convey “off-the-record” information that is excluded from our spoken words. 
The study of co-speech gesture stretches at least as far back as the work of Quin­
tilian in 50 AD, and draws from the disciplines of cognitive science, performance 

7.1 The Importance of Gesture in Social Interaction 

7.1.1 What are Gestures? 
Gestures as we discuss them here are the spontaneous movements that accompany 
speech. Generally, these are limited to hand and arm movements [McNeill 1992] but 
can occasionally extend to the head, feet, or other body parts [Kendon 2000]. Our 
focus here, however, is on hand and arm movements. 

Specifically, this chapter focuses on gestures in conversation that usually 
accompany utterances, commonly referred to as co-speech gestures. This includes 
gestures that occur during speech in conversational or performative settings, such 

as interviews and monologues, with or without audiences. These can occur with 

or without conversational partners as well. As we describe below, gestures serve a 

remarkably wide variety of communicative functions in conversation, including 

conveying information to observers as well as aiding in speech production and 

fluency for the speaker. 
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Table 7.1 Table of gesture classical types and co-speech properties 

Gesture type Co-speech necessary? Viewer necessary? 
Emblem No Sometimes
 
Beat Yes No
 

Iconic Sometimes No
 

Deictic Sometimes Sometimes
 
Metaphoric Yes No
 

Importantly, the classifications provided here are by no means exhaustive. In 

this section, in addition to introducing one prevailing taxonomy (Section 7.1.1.1), 
we discuss weaknesses and alternative proposals to classifying gestures using these 

dimensions (Sections 7.1.1.2 and 7.1.1.3), as well as many other factors that deter­
mine how researchers tend to group gestures, both physically and functionally. 

7.1.1.1 Classification Dimensions 

A common method of classifying co-speech gestures is by the five types or dimen­
sions described in Table 7.1. These correspond not only to differences in the 

motions used to realize the gesture but more meaningfully to differences in the 

conversational contexts, their roles in speech production, and the communicative 

intentions of the speaker. 
Emblems are gestures that may essentially be thought of as replacements for 

spoken language. A prominent example is the “thumbs up” gesture that is common 

in several cultures, but often with strikingly different meanings. In North American 

and European cultures, for example, if somebody asks a question, a “thumbs-up” 
response unambiguously means “yes,” with or without verbal affirmation. They 
carry equivalent meaning to their linguistic counterpart. Importantly, the inter­
pretation of these gestures are culturally and linguistically dependent; the “OK” 
symbol in Western cultures is a rude insult in Morocco. 

Beat gestures, contrarily, are gestures that do not carry semantic content in 

their movements, but instead “reveal the speaker’s conception of the narrative’s 
discourse as a whole” [McNeill 1992] by emphasizing specific words with small 
motions, often coinciding with the prosody of the spoken utterance. The move­
ment of a beat gesture is short and quick, and often takes place only in the periph­
ery of where the speaker uses other gestures [McNeill 1992], and take generally 
similar form regardless of content of the co-utterance [Levy and McNeill 1992]. 
Beats may also aid in speech fluency by coinciding rhythmically to a spoken co-
utterance, providing prosodic cues to word recall and comprehension [Hadar 1989, 
Leonard and Cummins 2011]. 
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Iconic gestures are literal representations of real, physical counterparts. For 
example, if someone utters “we need a knife to cut the cake,” they may produce 

a gesture with one flat palm held horizontally, and the other held vertically in a 

perpendicular “slicing” motion. In this instance, the hands are literally acting out 
the motion of a knife cutting something, with the hands embodying literal phys­
ical objects in the world. Similarly, an iconic gesture may be a mime of a literal 
motion. For example, if someone tells a story in which they were “running down 

the street,” they may hold their arms to their sides and swing them up and down 

to emphasize, exaggerate, or depict their speed. 
Deictic gestures are pointing gestures that direct attention toward a referent in 

the environment. If you have an array of items on a table and tell someone to “pick 

up that one,” the statement makes no sense without a verbal or gestural counter­
part to identify the referent. Similarly, if somebody asks, “which way did they go?”, 
a person may simply point in lieu of providing a verbal response. 

Metaphoric gestures “present an image of an abstract concept” [McNeill 1992]. 
For example, one may gesture in a bowl or container shape when describing “all 
of their ideas.” Although the abstract notion of an “idea” can never be physically 
realized, the metaphoric gesture situates “ideas” in a metaphorical container that 
can be reliably referenced throughout the conversation by the speaker and viewers. 

Multiple Classifications 

As McNeill [2006] has argued, these classifications are not strict types but rather 
dimensions that are overlapping and open to interpretation when considering the 

use of gestures in interactions. This refers to the notion that a particular gesture, 
within one particular context, may be interpreted to have different elements of the 

axes described above. 
The same physical motion of a gesture may result in different interpretations 

depending on co-speech context. Consider the “slicing” motion described above. 
When applied to physical objects (“a knife to cut the cake”), this would be charac­
terized as an iconic gesture. However, consider the same gesture if it accompanies 
the phrase “we need coordination to cut to the heart of the issue.” In this instance, 
the cutting is metaphorical as “issues” are not physical beings with literal “hearts.” 
Similarly, “coordination” is not a physical object like a knife that can cut. How­
ever, the metaphor of “cutting to the heart of an issue” is grounded in physical 
space insofar as cut is a verb that describes a physical action. In the metaphoric 
condition, “coordination” may be represented metaphorically as a knife by the 

fingers falling into stiff, parallel lines. In this case the fingers may further be 

thought of as representing people falling into line. This motion thus illustrates 
two distinct utterances in which the same gesture occurs, one where the gesture 
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(a) (b)

Figure 7.1 The motion of the metaphoric gesture accompanying the phrase “Anything at all.” 
(a) The beginning of the movement as she says “Anything at all.” (b) The second part of 
this gesture, creating the space where “anything” may metaphorically be. 

is referring to actually cutting a physical object and one where the gesture is used 

metaphorically. 
The use of a metaphor in speech is not necessary for the metaphor to be con­

veyed in the accompanying gestures. Figure 7.1(a) illustrates a metaphoric gesture 

accompanying the dialog “we can talk about anything at all.” There is no metaphor 
used in the dialog while the gesture is based in metaphors whereby abstract things, 
such as topics of conversation, can be represented as physical objects and a set 
of these objects can be held in a physical container that is being depicted by 
the gesture. Despite this degree of independence between the metaphor use in 

spoken language and accompanying gestures, the catalog of metaphors used in 

speech provides a useful resource for researchers. Grady [1997] provides many such 

metaphors, for which gesture researchers commonly observe gestural counter­
parts.1 These include similarity is proximity (e.g., “these fabrics aren’t quite the 

same but they’re close”), change is motion (e.g., “things have shifted since you were 

last here.”), and moments in time are objects on a path (e.g., “Summer always passes 
too quickly”). These and many other metaphors often coincide with physical rep­
resentations of these metaphoric actions [Lakoff and Johnson 2008] represented 

gesturally. 
The above are examples of how gestures may be used to emphasize or induce 

metaphors. Conversely, consider the straightforward presentation of two options 
“this or that,” with the hands held flat, palm-up in front of the speaker. The 

speaker may say “this option,” and beat with one hand, and then repeat the 

1. Grady does not propose or consider a framework for gesture analysis in this work cited. Instead, 
this work considers in depth the many ways in which metaphors permeate our speech, but does 
not explicitly discuss how we may use bodies to act out these metaphors as we say them. 
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phrase “or this option,” but move the other hand, clearly indicating that they 
are providing context for the different options. The indication is made by a beat 
motion, but also is a clarification of “which option,” giving it attributes of a deic­
tic gesture, referred to as an abstract deictic [McNeill et al. 1993]. Additionally, 
the laying out of two different ideas in space is metaphoric as it relies on the 

metaphors of abstract concepts being physical objects and dissimilar concepts are 

far apart (Grady’s [1997] categories/sets are bounded spatial regions), thus incorporat­
ing yet another element of the dimensions described above into a single gestural 
motion. 

7.1.1.3 Alternative Classification Schemes 

In some modern works, gestures are often given multiple classifications, or the 

classification of gestures is skipped altogether, and gestures are judged solely by 
their communicative role or perceived intention. For example, Murphy [2003] pro­
poses analyzing gestures not by abstract representation but instead by the pro­
duction of those representations themselves. That is, gestures can be analyzed 

exclusively by their body movements as opposed to attempting to interpret what 
those movements represent. He argues that movement-based analysis is less prone 

to researcher bias and less likely to leave out body movements that do not fall neatly 
into the dimensions described above. 

This is contrary to the idea proposed by Novack and Goldin-Meadow [2017]. 
They suggest that iconic and deictic gestures are not simulations of actions they 
intend to portray but instead are consciously representational of abstract versions 
of those actions. This allows researchers to organize gestures according to their 
functional role in conversation. By focusing on gesture’s function as opposed to 

its specific form, researchers can begin to focus on why a particular gesture occurs 
rather than how the intention maps to movement. 

Still more schemes that suggest classifying gestures using both principles of 
form and function also attempt to address this problem. Saund et al. [2019] dis­
cusses the possibility of delineating and classifying gestures according to both 

conversational context (the function of the gesture) in tandem with the novel 
physical spaces they occupy (physical form of the gesture). Additionally, because 

of these overlapping dimensions, the process of describing and classifying the 

motion of gestures themselves is often decoupled from the meaning the gesture 

carries [Kipp et al. 2007]. This allows other schemes to break down gesture clas­
sification into linguistic and motion sub-problems [Cassell 1998]. It is only by 
considering the full picture of gesture production, from intention, to function, to 

physical action, that we can begin to create socially compelling gesture in artificial 
agents. 
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7.1.2 Timing 
These axes of gesture vary as well by the timing of their performance with a 

co-occurring utterance, ranging from nearly coinciding temporally with speech, to 

gestural performances many seconds in advance [Calbris 1995, Nobe 2000, Gibbs 
2008]. However, perception of appropriateness for different gestures with respect 
to co-speech timing is not fixed [Leonard and Cummins 2011]. 

The window of time for gestures to be relevant to corresponding speech is sim­
ilarly fluid, depending on context [Leonard and Cummins 2011]. Often, gestures 
anticipate the speech to which they correspond [McNeill 1985, Nobe 2000], indi­
cating that, cognitively, the meaning we attempt to convey is formulated and per­
formed by the body before we are able to form (or at least utter) words for intended 

communication [Kendon 2000]. This similarly implies that the cognitive processes 
between communication intention and speech formulation are the same processes 
that initiate gesture production [Kendon 2000]. 

While the development of social artificial agents have a ways to go before 

these artifacts can form rich coherent conversational speech from a communi­
cation intention alone, it is important to keep in mind that such a pipeline that 
truly possesses the spontaneity, creativity, and expressive substance of human ges­
tures must similarly be responsible for producing meaningful co-speech gestures. 
We discuss current implementations of various gesture generators in relation to 

speech in Section 7.2. 

7.1.2.1 Gestural Phases and Units 

At the level of individual gestures, there is a complex feature structure. There are 

the phases of gestural motion including the rest, preparation, stroke, holding, and 

relax phases, as well as the forms of motion, their locations, and changing hand 

shapes. However, people often gesture in an overall fluid performance involving 

gesture sequences (a.k.a. gesture units [Kendon 2004]) in such a way that not all 
phases may be present in every individual gesture. In sequences, co-articulations 
between gestures may eliminate the rest or relaxation phase of a gesture [McNeill 
1992]. 

One such name to refer to a sequence of related ideas that can span multiple 

gestures is an ideational unit [Calbris 1990]. Calbris argues that ideational units 
structure the discourse and the kinesic segmentation of gestures, and serve to 

impose requirements on gestural features both within and across ideational units 
in an overall performance. 

Within a gesture performance, some features such as hand shape, movement 
trajectory, or location in space may be coupled across gestures while other features 
serve at times a key role in distinguishing individual gestures from one another. 
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This happens both physically and at the level of their meaning. For example, the 

hands may go into a rest position between gestures to indicate the end of an idea, a 

change of hand shape can serve to indicate the start of a new idea in the discourse 

[Calbris 2011], or one gesture’s location may serve to refer to a preceding gesture 

in an overall gestural scene where, for example, locations in gestural space take on 

specific meanings that may be referred to by subsequent gestures. 

Cultural Relevance 
Another critical aspect to bear in mind when discussing gestures, especially in 

the context of artificial agents, is that nearly every aspect of gesturing is cultur­
ally dependent [Efron 1941]. Hand shapes [Calbris 2011], gesture size and frequency 
[Kita 2009], emblematic meaning [Calbris 1990], and timing [Talmy 1985, Kita 2009] 
are a few examples of components of gesture that rely heavily on the native and con­
textual culture of the speaker. Some cultures use hardly any beat gestures, whereas 
some use them to punctuate almost every sentence [Levinson 1996]. As previously 
mentioned, emblems that are positive signals in one culture may be rude insults 
in another [Calbris 2011]. 

But beyond this, different cultures’ concepts of physical space and indeed time 

inform their gestures as well [DiMaggio 1997]. In North American cultures, when 

talking about time individuals often gesture along a plane running horizontal to 

the speaker, with the left in the past and the right in the future. However, in French 

culture time is often gestured as a plane running parallel to the speaker, as if the 

speaker is walking along the line of time with the future positioned in front and the 

past behind the back of the head [Calbris 2011]. But, in other cultures, the future 

may be referenced behind the speaker, with the past in front of the speaker’s eyes 
[Núñez and Sweetser 2006]. Contrast this yet again to Chinese culture, in which 

the vertical axis commonly applies in conceptualizing time where earlier times are 

viewed as “up” and later times as “down” [Radden 2003]. These different gestures 
show not only that cultural sensitivity must be taken into account for artificial 
agents when interpreting and performing gestures, but also that the underlying 

conceptual representation of time may differ between cultures as well. A further 
review may be found in Kendon [1997]. For an overview of the implementation of 
culture in SIAs, please refer to Chapter 13 of this handbook. 

Gesture’s Role in Conversation 
The influence of gesture permeates social interaction. While we predominantly dis­
cuss gesture’s role in human–human interaction, it is crucial to note that virtual 
agents elicit responses consistent to humans in many social contexts [Takeuchi 
and Naito 1995, Poggi and Vincze 2008, McCall et al. 2009, Krämer et al. 2013]. 
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7.1.4.1 Dialog Regulation 

Gestures can help regulate conversation, for example, by signaling the desire to 

hold onto, acquire, or hand over the dialog turn [Bavelas 1994]. Bergmann et al. 
[2011] explore a non-exhaustive list of the multitudinous ways gesture regulates 
dialog, which can be broadly broken into content-specific and content-agnostic 
behaviors. Content-specific gestures relate to the specific content being discussed, 
and includes clarification requests, establishing a confidence level in the con­
tent of conversation, assessments of relevance, and indications and connections 
of topical information within the conversation. Content-agnostic behavior, how­
ever, has to do with the social rules of the conversation. Content-agnostic gestures 
may include next-speaker selection or handling of anti-social or non-canonical 
discourse behavior, such as interrupting. 

7.1.4.2 Observer’s Internal Beliefs 

The gestures that accompany face-to-face spoken interaction convey a wide vari­
ety of information and stand in different relations to the verbal content. For 
the observer, gestures serve a wide variety of communication functions, such as 
commenting, requesting, protesting, directing attention, showing, and rejecting 

[Jokinen et al. 2008]. In realizing these communicative functions, a gesture can 

provide information that embellishes, substitutes for, contradicts, or is even inde­
pendent of the information provided verbally (e.g., Ekman and Friesen [1969b] and 

Kendon [2000]). 
As discussed above, gestures, of course, are physical actions but these actions 

can convey both physical and abstract concepts. A sideways flip of the hand sug­
gests discarding an object but can also be used to represent the rejection of an idea 

[Calbris 2011]. Gestures serve a variety of rhetorical functions. Comparison and 

contrasts between abstract ideas can be emphasized by abstract deictic (pointing) 
gestures that point at the opposing ideas as if they each had a distinct physical 
locus in space [McNeill 1992]. A downward stroke of a gesture is often used to 

emphasize the significance of a word or phrase in the speech or enumerate points. 
Gestures are also used to reinforce and clarify their co-speech utterances. 

Jamalian and Tversky [2012] show that different gestures in coordination with 

the same temporally ambiguous utterance (“the meeting was moved forward 

two days”) successfully disambiguate temporal uncertainty. Similarly, gestures 
are able to allow observers to interpret statements as questions using the same 

audio [Kelly et al. 1999], and to disambiguate linguistic homonyms [Holler and 

Beattie 2003]. It is precisely because gestures are used to clarify speech so often 

that some researchers suggest that gesture is the first tool humans use to disam­
biguate basic ideas and requests [Özçalı̧skan and Goldin-Meadow 2005]. Further 
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evidence suggests increased gesturing in this manner can lead to positive learning 

outcomes in teaching scenarios [Goldin-Meadow and Alibali 2013]. 
Yet the impact of gesture is not always so explicit. For example, gestures are 

known to influence thought in the viewer. In the same publication, Jamalian and 

Tversky [2012] showed that using different types of metaphoric gestures changes 
the way that individuals qualitatively describe certain systems and processes. 
Gestures can also present information about the speaker’s state and views toward 

the subject of conversation. Pollick et al. [2001] show that viewers are able to read 

affect from arm motions alone, potentially giving the viewer valuable interpretable 

information about the gesturer’s internal mental state. 
Similarly, gestures have also been shown to influence memory recall in cases 

of eye-witness testimony [Gurney et al. 2013], opening up discussion of gestures 
providing leading answers in a similar off-the-record manner. 

Seeing gestures used appropriately also bolster’s viewers’ impression of the 

speaker. Speakers who gesture in conversation are perceived as more composed, 
effective, persuasive, and competent than those who do not [Maricchiolo et al. 
2009]. 

Revealing the Speaker’s Mental States and Traits 

Gesture plays a critical role in human interaction, where it is not simply an addi­
tion to speech. Rather, it is an independent expression of thought that reveals the 

underlying beliefs, intentions, and processes of the speaker [Cienki and Koenig 

1998]. 
A wide range of mental states and character traits can be conveyed gestu­

rally. Placing hands on hips can display dominance or displeasure, gestures per­
formed with rapid acceleration can convey arousal or displeasure, and a gesture 

with palm facing outward as if suggesting stop can convey displeasure at what a 

conversational partner is saying or doing. 
Self-touching gestures or self-adaptors [Ekman and Friesen 1969b], such as rub­

bing a forearm, are also believed to convey information about a person’s mental 
state while also providing self-comfort. In particular, these behaviors can reveal 
negatively valenced emotional states such as anxiety, fear, or guilt [Ekman and 

Friesen 1969a]. 
Gestures may further be used to implicitly convey off-the-record information 

[Wolff 2015]. For example, a speaker may describe two people “getting together” 
with a co-speech gesture of either gently intertwining hands, or two fists clashing 

against one another. While the former may suggest harmony between individu­
als, forcing hands together at high velocity multiple times implies conflict and 

aggression [Morris 2015] (we discuss the ways in which the form of gesture carries 
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meaning in Section 7.2.1). However, the speaker may specifically choose to con­
vey this information outside of the speech channel. In doing so, the speaker both 

relays information in a fashion that is off-the-record but still provides context of 
that information for the viewers. 

7.1.4.4 Speaker Impact 
While gesture is an invaluable tool for communication, it also acts as an aid 

for the speaker. Gestures occur regardless of whether a listener can actively view 

them. Individuals gesture at near the same rate when speaking to someone on the 

phone or in person [Iverson and Goldin-Meadow 1998]. Similarly, individuals ges­
ture when they know that the viewer is blind [Iverson and Goldin-Meadow 1997, 
1998]. Even congenitally blind individuals gesture at both sighted and other blind 

individuals [Iverson and Goldin-Meadow 2001]. This suggests that gesture plays an 

important role not only in social communication but to aid in the speaker’s own 

process of conveying information. One hypothesis for this is that using gesture 

helps lighten the cognitive load on the speaker [Goldin-Meadow et al. 2001]. 
While it is impossible to know the full extent of interaction between gesture and 

speech without understanding the underlying mechanism of going from thought 
to communication, we can observe ways in which communication is explicitly 
aided by gesture, or rather, hindered without gesture. Speakers speak less fluently 
when they lose the ability to gesture [Lickiss and Wellens 1978]. They also have 

more trouble recalling words when their hands are bound and they are unable to 

gesticulate during speech [Rauscher et al. 1996]. This phenomenon points to deep 

relationships between physical body movements and cognition, discussed in the 

next section. 

7.2 Models and Approaches 
While the importance of gesture in both the viewer and the speaker is clear, so too 

is the extent to which gesture is a complex, nuanced, and difficult task to perform. 
Broadly, this difficulty can be broken down into two tasks: selection and execu­
tion. This is not to downplay all the difficulty in collecting upstream knowledge on 

which to base selection, such as modeling or inferring intentions, leakage, dialog 

regulation, and predicting the effects of gesture performance. These phenomena 

represent substantial challenges in their own right, and have fields of research ded­
icated to them. For purposes of gesture generation, we will focus on approaches for 
these two sub-problems. 

However, before we go further into how gestures may be generated and acted by 
socially intelligent agents, we must elaborate on how gestures carry meaning in the 
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first place in order to discuss how the components of gesture may be manipulated 

based on communicative intent. 
In this section, we focus on broad approaches and their similarities and dif­

ferences. While we provide contemporary examples of these various architectures, 
we do not deal with implementations of computational models or gesture gen­
eration mechanisms. For a more extensive look at the implementation of such 

architectures, please refer to Chapter 16. 

How Gestures Carry Meaning 
As we saw earlier, gestures play a variety of functions in face-to-face interaction 

and further there may be multiple such functions that are relevant during a spe­
cific utterance. However, there is a limit to the complexity of information they can 

reliably convey [Saund et al. 2019]. In this section, we discuss the traits of gesture 

that have been shown to carry meaning to viewers. 
There are many individual components of a gesture that may be responsible for 

viewer interpretation, and the information and capacity of each component varies 
by individual and by culture. Broadly, when discussing co-speech gestures, we refer 
to the shape and trajectory of the hands and all of the parameters that guide 

those components. Non-exhaustively, this includes velocity and amplitude of arm 

motions, orientation of the speaker toward the subject, the direction and symme­
try of the hands, and the timing of hand shape changes relative to conversational 
context. 

These components and more are discussed at length by Calbris [2011], in which 

she discusses how parameters of these components (such as the plane of trajec­
tory of the hands or orientation of the hand relative to the arm) may augment or 
vary the communicative function of a gesture. Specifically, she uses the gestural 
components specified in Zao in Calbris et al. [1986]: movement, localization, body 
part, orientation, and configuration. Together, these components can be used as 
a framework to describe and analyze the shape and communicative function of 
conversational gestures. It is not only the components themselves but moreover 
the dynamics (e.g., amplitude, speed, and fluidity of movement) of these compo­
nents are integral in conveying these functions [Castellano et al. 2007]. Calbris et al. 
[1986] also explores how varying parameters of a gesture may result in multiple ges­
tural representations of a single idea, and how, because of the parameter space of 
gestures, one idea may be presented by many different conceivable gestures. 

Challenges of Gesture Generation 
The two challenges of selection and execution come with two important con­
straints that plague all aspects of intelligent social agent research: processing time 
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and realization (animation or hardware) constraints. An acceptable pause between 

utterances is anywhere from 100–300ms [Reidsma et al. 2011], during which time an 

agent must gather or infer the relevant context, select a gesture given that context, 
plan, and perform the gesture in coordination with speech in order to appear nat­
ural. Similarly, choosing the contextually perfect gesture is useless if it cannot be 

performed on the required hardware. If choosing the optimal gesture would take 

5s, but a close-enough gesture only 0.05, that must be accounted for in the selection 

process. 
In addition to these theoretical challenges, researchers also face the practi­

cal issue of how best to transcribe communicative functions using a common 

interface across different selection and execution implementations. The domi­
nant framework for this is the SAIBA framework [Kopp et al. 2006] with stages 
that represent intent planning, behavior planning, and behavior realization. SAIBA 

interfaces with two markup languages, functional markup language and behav­
ior markup language, to move between these stages. By beginning with intention 

of the agent, one can then derive the signals to produce. This decouples inten­
tion from implementations for different gesture generation mechanisms so they 
may be applied to different social agents, and forces architectures to drive gesture 

generation by intention and communicative function. Notably, this framework was 
explicitly developed with the goal of interdisciplinary collaboration in mind. 

In reality, the major challenges of what motions to perform, how to commu­
nicate those motions, and how to finally perform them must be considered in 

tandem throughout the gesture selection and performance process. Below, we dive 

deeper into the considerations of the process going from communicative intent to 

gesture performance. 

7.2.2.1 Selection 

Selecting a gesture comes with a range of considerations. Some driving factors 
may be the communicative intent of the speaker, from the motivation and sub­
goal of a particular utterance to any driving goals of the interaction. An agent must 
then incorporate relevant social context, such as the social status of the user or 
the user’s attentiveness to the conversation. This leads to considering the loca­
tion of the conversation, both generally and to be aware of elements that may be 

constantly updating, such as people walking by. These factors drive the process of 
determining how to actually gesture, both with and without speech. 

Selection must primarily be guided by the conversational goals of an agent. 
While gestures can be used to build rapport between agents and users [Wilson 

et al. 2017], this function may be considered unnecessary or even detrimental to 

an agents whose primary function is to direct or inform users efficiently. It is 
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important that these dialog goals guide gesture selection, as random gesturing is 
not only confusing for the viewer and unnatural looking [Lhommet and Marsella 

2014] but can also lead to critical misunderstandings [Gurney et al. 2013]. 
As previously discussed, one role that gesture plays in human speech is to con­

vey both explicit and implicit information to conversational partners in a contex­
tually appropriate manner. Depending on the intended communicative function 

of the gesture, this context can be considered with great depth. One of the fun­
damental social skills for humans is the attribution of beliefs, goals, and desires 
to other people, otherwise known as theory of mind [Whiten and Byrne 1988]. In 

other words, an agents’ concern with respect to gesture is not only “what does my 
gesture mean?” but “what does my gesture mean to them?” Scassellati [2002] pro­
vides an overview of how these challenges might be addressed in artificial agents, 
including implementations to find ways that can be used to predict internal state 

and, consequently, potential user responses. For an overview of theory of mind for 
SIAs, please refer to Chapter 9 of this handbook. 

Moreover, what may still be more relevant to an agent’s gestures is its own inter­
nal emotional state. Gesture can also be used to portray emotion in a way that is 
detectable by viewers [Pollick et al. 2001, Kipp and Martin 2009]. There is consid­
erable literature dedicated to computational models of emotion, with a summary 
found in Marsella et al. [2010]. The breadth of this field in the context of gesture 

research suggests that an agent’s own internal state may play a modulating role in 

gesture generation, with respect to both the type of gesture selected as well as the 

way that gesture is performed. Research suggests agents with understandable and 

consistent mental states and that act predictably are preferable for users [Mubin 

and Bartneck 2015], making gesture a key potential avenue to facilitate positive 

social interaction. 
Yet another consideration is when is a gesture performance appropriate by an 

agent. If given speech to perform, acoustic features such as emphasis and prosody 
can be key indicators of when a gesture performance may enhance communica­
tion (or hinder it) [Krahmer and Swerts 2007]. Similarly, semantic information in 

speech may give clues as to when to gesture or give parameter values to modulate 

gestures. For instance, it may be advantageous to refrain from gesturing, or use 

very low-amplitude gestures, when discussing sensitive topics. 

Execution 

Equally important to the context and content an agent may access and express 
is the structure of potential gestures the agent can perform. Given the space of 
possible human gestures (e.g., the infinite planes on which hands can project and 

angles at which wrists can move, Section 7.2.1), they can be extremely challenging 
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or impossible to replicate exactly, especially in physical robots with limited degrees 
of freedom compared to people or non-humanoid forms. 

One area of concern in terms of the execution of a gesture is temporally aligning 

motion appropriately with co-speech utterances. Gestures seem to differ in terms 
of perceivers’ sensitivity to their alignment with speech [Bergmann and Kopp 2012]. 
Depending on agent implementation, coordination with other relevant body parts, 
such as the eyes, legs, and mouth, may present challenges for both dynamic ani­
mation and robotic movement. While virtual agents may have limited body points 
that can be controlled, a wide variety of tools from 3D modeling and animation 

tools [Autodesk, INC.] to character animation engines [Niewiadomski et al. 2009, 
USC Institute for Creative Technologies] exist to both hand animate, use motion 

capture, or procedurally generate gestures on virtual agents. 
As discussed in Section 7.1.2.1, another challenge in gesture animation concerns 

the complex structure of gestures and the role of that structure in the perfor­
mance of sequences of gestures (namely the phases described in Section 7.1.2.1). 
This includes the challenge of how to integrate individual gestures’ features into 

fluid performances. To do so, virtual agent researchers have taken into account 
that human gesturing has a hierarchical structure that serves important demarca­
tive, referential, and expressive purposes [Xu et al. 2014]. Xu et al. [2014] lay out 
an approach that uses this higher level of organization to realize gesture perfor­
mances. Their approach determines when and which features are common versus 
which ones must be distinguishable and addresses issues concerning the physical 
coordination or co-articulation between gestures within gesture units, including 

determining whether individual gestures go into phases of relax, rests, or holds. 
The work of Xu et al. drew on Calbris’ [2011] concept of an ideational unit. 

Another challenge concerns the manipulation of the expressivity of gestures. 
For example, consider a gentle beat gesture that might convey a calm speaker 
emphasizing a point versus a strong beat gesture with larger, more accelerated 

motion that conveys a more agitated speaker strongly emphasizing a point. One 

approach to realizing such variation is to handcraft a suite of beat gestures. The 

technique of parameterized blending of animations, however, supports smooth 

variation between those extremes by controlling the amount of each gesture that 
is used in the blend so that the resulting gesture could vary the degree to which it 
emphasizes a point or conveys agitation. Blending presents challenges specifically 
to animators and graphic designers responsible for the presentation of gestures 
on virtual agents. A variety of motion blending techniques used specifically in the 

context of gesture generation are discussed in Feng et al. [2012]. 
Robots offer their own set of challenges. Often, robots have far fewer degrees of 

freedom than humans and virtual agents, with hard constraints on the extent and 
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speed of motion. They are very different and severely limited compared to graphics-
based humanoid models. Specifically, robots suffer from the physical limitations 
of their own hardware, with body parts being too heavy to move quickly without 
hurting themselves or others around them. Or, in order to alleviate danger to them­
selves or others, they may have a severely limited range of motion they can use to 

express gestures. These challenges are discussed further in Section 7.3. 

Gesture Catalogs Versus Dynamic Generation 

Broadly, we can characterize approaches to gesture generation as either using a set 
catalog of gestures or a set of parameters that drives dynamic generation of ges­
tures on the fly. Here we provide an overview of these approaches, while below we 

will instantiate them with existing implementations. 
Virtual agent designers and social roboticists often take the approach of using 

a fixed library of gestures. This is beneficial both because the agent designer may 
create gestures specific to the use case of the agent, either by having an anima­
tor create gestures using animation software or use motion capture of an actor. 
Another benefit is that by having pre-computed animations the agent does not 
have to do extra work to actually compute the animation, but instead can act 
instantaneously in a motion that is guaranteed to satisfy the requirements of its 
software and hardware. However, while looking smooth and executing quickly are 

huge considerations in social agent research, this approach suffers from a lack 

of diversity in movements. By selecting only from a library of pre-animated ges­
tures, agents risk looking particularly “artificial” by re-using gestures, by lacking a 

gesture for a particular social situation, or by being unable to vary expressivity. 
To address such limitations, research has explored parameterized gesture gen­
eration techniques as mentioned above that blend animations dynamically, pro­
viding a continuous range of variability between a mild beat gesture to a strong 

beat or small frame gesture or a large frame. This can also be done across multi­
ple dimensions so that, for example, a beat may be varied both in intensity and 

direction. 
Alternatively, an option of greater complexity is to allow agents to generate ges­

tures entirely from a more complete parameterization of the motion such as the 

hand shapes, the path the wrist takes, etc. This can be manifested in two ways by 
generating gestures on the fly or finding gestures from a library that satisfy any 
specified parameters. The first approach must contain a model of how particu­
lar elements of the communicative context relate to gestural parameters, where 

the context might include, for example, whether the agent is trying to convey con­
fusion, how agitated should the agent look, and what hand shape and motion 

was used in the previous gesture. The alternative one might use is to simply have 
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a lookup table approach, where the context selects a set of pre-specified param­
eter values. For example, Poggi et al. [2005] uses context to derive hand-crafted 

parameters (such as amplitude, openness, etc.), which then select from a library 
of pre-created gestures. The use of pre-animated motions saves the calculation 

of motion planning during execution, while also supporting manipulation of the 

dynamics of those motions during execution to provide a level of novelty for the 

viewer. 
Importantly, the resulting gesture from any method may still be adjusted 

through parameter manipulation. Gestures may be sped up, mirrored to adjust 
direction, or blended to create amplitudinal “mild” or “extreme” versions of a 

gesture, all at run time. 

7.2.3 Broad Approaches in Current Implementations 
We have discussed the ways in which gestures carry meaning and the challenges 
facing researchers who implement generative models of gesture. Now, we present 
implementations that attempt to overcome these challenges to create compelling 

gestures in socially intelligent agents. 
Approaches to co-speech gesture generation can be characterized as existing on 

a continuum: rule-based vs. end-to-end machine learning techniques. One issue 

common to any approach, however, is that of going from mental states to gestu­
ral performance. As we noted, human gesturing is influenced by a wide variety of 
mental states, including communicative intentions within and across utterances, 
leakage or regulation of affective and cognitive states, traits, and dialog manage­
ment. The richness of human gesturing arises from this variety of mental state 

inputs. 
However, the social agent field currently lacks a cognitive architecture of suffi­

cient complexity to model such a variety of mental states, and has broadly moved 

away from holistic, all-encompassing behavioral architectures (with notable excep­
tions [Swartout et al. 2006, Kopp et al. 2014]). Consequently, the proxy input in 

gesture models is often reduced to the text and/or audio of the utterance that the 

agent is meant to perform, sometimes along with a limited communicative intent, 
for these elements are available to agents. This can limit an agent’s gesture per­
formance to what is available in these inputs. In other words, if the agent is not 
modeling emotion, social attitudes like skepticism or what it wants to say on versus 
off the record, then its gestures cannot reflect this information. This is even true in 

the case of systems that use recorded voice, where potentially some of this informa­
tion may be inferred from the audio, since the agent or agent designer must still be 

modeling to such information when selecting or recording the voice, respectively. 
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Rule-based Models 

One of the earliest, if not earliest, generators is the behavior expression animation 

toolkit (BEAT) [Cassell et al. 2004], which works by analyzing the relation between 

surface text and gestures. Text is parsed to attain information such as clauses, 
themes/rhemes, objects, and actions occurring in the discourse. This information 

is then used in conjunction with a knowledge base containing additional informa­
tion about the world in which the discourse is taking place in order to map them 

onto a set of gestures. 
Non-verbal behavior generator (NVBG) [Chiu and Marsella 2011] extends the 

BEAT framework by making a clearer distinction between the communicative 

intent embedded in the surface text (e.g., affirmation, intensification, negation) 
and the realization of the gestures. This design allows NVBG to generate gestures 
that are rhetorically relevant even without a well-defined knowledge base. 

Another approach that utilizes real-world utterance analysis is by Stone et al. 
[2004]. They proposed a framework to extract utterances and gesture motions from 

recorded human data, and then generate animations by synthesizing these utter­
ances and motion segments. This framework includes an authoring mechanism to 

segment utterances and gesture motions and a selection mechanism to compose 

utterances and gestures. Similar to this, Neff et al. [2008] created a comprehensive 

list of mappings between gesture types and related semantic tags to derive trans­
mission probabilities of motion from sample data. This framework captures the 

details of human motion and preserves individual gesture style, which can then 

be generalized to generate gestures with varying forms of input. 
This leads to a still more sophisticated method of generation, which is to com­

bine this language-based method with making inferences from dialog about the 

mental state of the agent to determine which gesture to use. Notably, this approach 

may be effective without mapping to exact gestures. The outcome from different 
rules may, instead of prescribing an exact gesture, determine specific elements that 
should be present in a gesture (as seen in Poggi et al. [2005]). Additionally, vari­
ous contextual information, such as speech prosody or detected listener attention, 
can determine other elements of gestural performance such as speed (or co-speech 

timing) and amplitude. 
This approach has been shown to be effective through multiple prominent 

examples in virtual agents. Using a combination of acoustic and linguistic ele­
ments, Cerebella [Lhommet and Marsella 2013, Marsella et al. 2013] is a system 

currently in use in both virtual agent and social robotics applications. which 

dynamically generates gestures that appropriately correspond to speech both 

auditorily and semantically. 
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Figure 7.2 The architectures of two generative gesture models. (a) Cerebella architecture and 
(b) GRETA architecture. 

Greta [Poggi et al. 2005] is another example that typifies how high-level con­
cepts can be used through external context to drive the motion of gestures of an 

agent. The architecture for these two systems, which provide excellent comparative 

examples of gesture generating architecture, are shown in Figure 7.2(a) and (b). 

7.2.3.2 Data-driven Techniques 

The other end of the spectrum is completely text-agnostic end-to-end gesture pro­
duction using deep learning. These models use large amounts of audio and video 

harvested from online sources like YouTube, and use video parsing tools such as 
OpenPose [Cao et al. 2019] to extract motion data to correlate audio to speaker 
movements. Using varying combinations of adversarial networks and regression, 
models are able to produce extremely natural gestures over a wide variety of speech-
audio inputs [Ferstl et al. 2020]. This approach undeniably leads to impressively 
natural results, particularly in the context of generating gestures based on an 

individual speaker [Ginosar et al. 2019]. 
However, this approach lacks the sophistication of including multiple infor­

mative aspects of gesturing. By using audio input, these models are largely based 

exclusively on vocal cues like pitch and prosody. As a result, they fail to learn map­
pings between motion and semantic and rhetorical structure, and produce ges­
tures that, while more natural, are less nuanced and complex than those we see in 

human performance. While it has been argued that the middle layers of these net­
works can derive some of these aspects [Takeuchi et al. 2017], evaluations of gesture 
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meaningfulness or semantic relatedness to co-utterances have not been done with 

end-to-end machine learning models based on audio. 
Recently, end-to-end models have also been developed without audio, exclu­

sively using the co-utterance text of gestures [Yoon et al. 2019]. These have resulted 

in gestures that are judged as related to co-utterance, as well as life-like and like-
able. This work paves the way for promising avenues in the future of gesture gen­
eration, harnessing the power of both end-to-end machine learning models with 

speech qualities derived from both audio and textual cues. 
The possibility of hybrid systems can offer the best of both worlds in terms of 

flexibility, novelty, and performance. From the examples above, it is easy to see 

how these two approaches exist on a continuum. In the rule-based example, to 

recognize that a particular phrase has a negative intent necessarily requires some 

aspect of machine learning, as there is a robust body of literature on detecting 

affect in both written language [Pennebaker et al. 2001, Hutto and Gilbert 2014] and 

speech [Eyben et al. 2009, Schuller et al. 2011]. Similarly, we can detect transcripts 
from audio input and parse these using rhetorical and semantic cues through text 
parsers (e.g., Charniak [2000], Pedersen et al. [2004], and Joty et al. [2015]), many 
of which are used in the models above. These can be correlated with gestures and 

may add crucial elements extra-auditory to deep learning models. 
The Cerebella system realizes such a hybrid technique. It leverages information 

about the character’s mental state and communicative intent to generate non­
verbal behavior when that information is modeled by the agent [Marsella et al. 2013, 
Lhommet et al. 2015]. In addition, it relies on machine learning methods to also 

derive syntactic structure from the text and prosodic information from the spoken 

utterance. These sources of information are fed into a rule-based system and lexi­
cal database that perform additional lexical, pragmatic, metaphoric, and rhetorical 
analyses of the agent’s utterance text and audio to infer communicative functions 
that will drive the agent’s non-verbal behavior. 

Gesture Collection and Analysis 
To study and understand naturally occurring gestures, researchers use a variety of 
techniques, tools, and analyses. 

Like many fields of behavioral psychology, researchers have used natural obser­
vation since the 1970s and 1980s. In the lab, however, classical techniques include 

solving spatial reasoning problems and game play [Alibali and GoldinMeadow 

1993], narrating videos [Kita and Özyürek 2003], or telling written stories to con­
versational partners [Jacobs and Garnham 2007]. Recently, researchers have begun 

using more subjective techniques such as conversational scenarios [Ennis et al. 
2010] and questions, explicitly designed to elicit a variety of metaphoric gestures 
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[Chu et al. 2014]. Some researchers have also used trained actors, either to perform 

their interpretation of an expression of an emotion or to speak freely in a story-
like, monologue fashion [Ferstl and McDonnell 2018]. Recently, current tools like 

YouTube have provided troves of real-life examples of gestures by a huge variety of 
speakers in different contexts [Ginosar et al. 2019, Yoon et al. 2019]. 

A litany of tools is then used to dissect and analyze these gestures. Mainly 
from audio and video, a variety of annotation schemes have been developed for 
the purposes of segmenting and assigning meaning to sections of gestures [Chafai 
et al. 2007, Neff et al. 2010, Kipp 2014]. Such schemes are validated by determining 

internal consistency and inter-annotator agreement, thereby generating a reliable 

metric through which gesture elicitation techniques as well as gestures themselves 
can be compared along many axes. 

Motion capture has also gained prominence in the gesture-capture space. 
Motion capture allows precise information on the spatial and temporal aspects of 
gesture, which can lead to powerful insights into how gesture correlates to speech 

and other elements of non-verbal behavior [Luo et al. 2009]. However, this equip­
ment is also expensive, can be cumbersome or distracting for participants, and still 
suffers from technical inaccuracies, particularly for capturing hands. And techno­
logical advances have allowed still other tools, such as gyroscopes, accelerometers, 
wiimote, and even VR controllers to sometimes be used to capture information 

about gestures [Corera and Krishnarajah 2011]. 
Using these and other technologies, numerous datasets have gained popularity 

for use of studying, comparing, and animating gestures. This includes a wide range 

of visual technologies, from over 30 camera angles [Joo et al. 2017] to one central 
camera [Cooperrider 2014], and from set gestures in tightly controlled staging con­
ditions [Gunes and Piccardi 2006, Hwang et al. 2006] to spontaneous recordings 
collected completely outside laboratory settings [Ginosar et al. 2019, Yoon et al. 
2019]. Along with a growing interest in open science and dataset production, new 

annotation tools such as the Visual Search Engine for Multimodal Communication 

Research [Turchyn et al. 2018], which allows researchers to rapidly search datasets 
for specific types of motion, are becoming more sophisticated and widely used. 

7.2.5 Evaluation 
Evaluations of these models must be as application-driven as the selection and per­
formance of the gestures themselves. And, while some metrics offer the comfort of 
traditional statistical analysis or straightforward interpretations, the right metrics 
to evaluate a model might be as difficult to determine as the gestures themselves. 

Manipulating gesture can impact how viewers perceive an agent’s person­
ality traits [Neff et al. 2010] as well as common factors of interest such as 
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trustworthiness, persuasiveness [Poggi and Pelachaud 2008], and naturalness 
[Maatman et al. 2005], often using self-reported subjective measurement tech­
niques. However, these factors are usually difficult to measure directly. Many indi­
vidual gestures may be produced over the course of a relatively short utterance, 
leading to a litany of issues for how best to parse and recreate the timing of ges­
tures [Wilson et al. 1996, Wachsmuth and Kopp 2001, Chiu and Marsella 2014]. This 
is even further complicated once a gesture has been selected for evaluation because 

humans are notoriously bad at consciously discerning what does and does not look 

natural [Ren et al. 2005], for example. 
For this reason, a variety of other metrics may be employed to measure the per­

formance of generative models across axes of interest. Providing a forced choice 

between the original input gesture and the model’s output and comparing results 
versus a random production may be an alternative way to allow users to express 
preference for gesturing behavior [Lhommet and Marsella 2013]. Mixed methods 
may also be used, for example, giving users a chance to freely write an utterance that 
could accompany a gesture and perform a thematic analysis on the generated utter­
ances. Minimally, this method can be used during pilot experiments to determine 

appropriate terminology for classic fixed-choice responses [Bryman 2017]. 
Although it may seem intuitive that gestures should be evaluated by inter­

pretability or clarity, this may not always be the case. For instance, an agent may 
actually intentionally perform a gesture that contradicts the utterance. The ulti­
mate goal is to evaluate the gesture’s consistency with the desired communicative 

function. That function, though, must be tailored to the particular context and uses 
for that social agent. 

As an alternative to subjective measurements, one can evaluate gestures in 

terms of do they have the desired effect on behavior. For example, a range of exper­
imental games have been used to explore the effect of an agent’s non-verbal behav­
ior on a human participant’s behavior. prisoner’s dilemma [De Melo et al. 2009], 
the ultimatum game [Nishio et al. 2018], and the desert survival task [Khooshabeh 

et al. 2011] are a few examples. 
When the physical motion properties of a gesture are available, as in the Bound­

ing Volume Hierarchy (BVH) file format used in motion capture and animation 

work, objective metrics concerning the physical properties can be used to evaluate 

gestures. The challenge here becomes relating these properties to communicative 

functions and non-verbal behavior. 
Tools to deploy evaluations are also advancing rapidly. Whereas researchers 

previously required individuals to make in-person evaluations of many gestures, 
crowdsourcing platforms such as Amazon’s Mechanical Turk and Prolific now 

imbue the possibility of rapidly acquiring many “first-impression” measures on 



234 Chapter 7 Gesture Generation 

many different gestures. This has the added benefit of reducing the burden 

on viewers as well as reducing any fatigue effects of rating many different ges­
tures. However, crowdsourcing platforms often offer varying quality in partic­
ipant responses, and some demographic elements cannot be verified, making 

precise research on this medium challenging [Breazeal et al. 2013]. Additionally, 
crowdsourced participants may be non-naive “expert survey-takers,” which can 

skew study results [Downs et al. 2010]. Study design elements such as verifying 

attentiveness, longitudinal studies, and mixed method qualitative analyses of free 

responses are able to overcome some of these challenges [Chandler et al. 2014, 
Rouse 2015]. 

Ultimately, the evaluation of a model must be specific to both its implementa­
tion and application. 

7.3 Similarities and Differences in Intelligent Virtual Agents and 
Social Robots 
Both social robots and virtual agents are discussed when considering the future of 
human–computer interactions. The application domains that researchers in each 

field aim to apply these artificial social agents largely overlap, and include personal 
assistance, companionship, education, leisure, and clerical work [Riek 2014]. 

The importance of co-speech gesture in both domains has been strongly estab­
lished, albeit with discrepancies as to the impact of physical embodiment [Li 2015]. 
Gesture is widely acknowledged as vital in initiating social conversation [Satake 

et al. 2009], building rapport [Riek et al. 2010], and increasing human-likeness 
[Salem et al. 2013] for both virtual agents and social robots. Non-verbal behavior 
in social robots also increases users’ abilities to maintain mental models of the 

robot’s internal state [Breazeal et al. 2005], which is vital in co-operative tasks [Hiatt 
et al. 2011]. 

So far the algorithms we have described have been agnostic to the agent that 
may employ them. In this section we explore the similarities between gesture gen­
eration in virtual agents and social robots, but more pressingly the acute challenges 
that come with realizing gestures on physical devices. 

7.3.1 Physical Presence 
A significant body of literature suggests that robots gain some benefit to social 
interaction over virtual agents [Thellman et al. 2016]. Techniques that require phys­
ical presence, such as user mimicry and attention-grabbing motions [Fridin and 

Belokopytov 2014], may give robots an edge on virtual agents in terms of boosting 

learning outcomes in tutoring settings [Leyzberg et al. 2012, Belpaeme et al. 2018], 
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particularly for children [Jost et al. 2012]. Social robots have also been shown to 

be more helpful and enjoyable in interactions than their virtual counterparts for 
adults who are familiar with robots [Wainer et al. 2007]. However, robots also suffer 
from very high user expectations with respect to physical interaction and ability to 

sense the environment [Lee et al. 2006]. 
Many of these evaluations are task-based or based solely on physical embod­

iment and not about specific movements of gestures on robots versus virtual 
agents. It is unclear how these physical properties transfer to gestures’ commu­
nicative properties. 

Challenges of Physicality 
There are many reasons why it is difficult to compare human-like gestures on 

virtual agents and robots due to robot form, function, movement capabilities, 
environmental limitations, and the high stakes of making movement mistakes 
in a robot. These limitations require creativity, artistry, and thorough exploration 

to realize communicative expression in new ways on physically limited robots. 
Ultimately, individual use cases must be taken into account when determin­
ing the tradeoff between utilizing a virtual agent or a social robot for specific 
purposes. 

Humans have many more degrees of freedom in motion than most commer­
cially available robots, and especially the social robots seen today [Leite et al. 2013]. 
High degrees of freedom robots are costly and more difficult to program than 

simpler counterparts. While a few humanoid robots with potentially full expres­
sion do exist [Robotics 2019, Shigemi et al. 2019], many more exist with humanoid 

shapes but severely limited expression [Gouaillier et al. 2009, Robotics 2018], and 

still more bypass any attempt at humanoid presentation in favor of more abstract 
forms [Anki, Breazeal 2014, Embodied]. For this reason, most generative algo­
rithms designed for virtual agents must be re-mapped onto a robot’s more lim­
ited expressive abilities, which can make gestures appear awkward or mis-timed 

[Bremner et al. 2009, Ng-Thow-Hing et al. 2010]. 
In most cases industrial robots are equipped with a set of pre-recorded gestures 

that are not generated online but simply replayed during human–robot interaction, 
as seen in Gorostiza et al. [2006], Sidner et al. [2003], or Salem et al. [2012]. Align­
ing speech to motion is particularly difficult in robots due to the path-planning 

required for novel gestures [Kopp et al. 2008]. 
Existing in the physical environment, while potentially more compelling and 

certainly with a wider range of physical tasks that may be accomplished, comes 
with distinct challenges when it comes to gesture. Problems unique to robots 
extend from motion planning to design, control, sensing, biomimetics, and 
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(a) (b) (c) (d)

Figure 7.3	 Some examples of contemporary social robots, ranging from humanoid with arms and 
legs, to less humanoid but still distinctly human with torso and arms, to more abstract 
but retaining a head and torso shape, to completely un-humanoid (and object-like). 
(a) ASIMO by Honda. (b) Pepper by SoftBank Robotics. (c) Jibo, photo courtesy of NTT
 
DISRUPTION US Inc. (d) Cozmo, photo courtesy of Digital Dream Labs.
 
Photos retrieved from global.honda/innovation/robotics; https://www.
 
softbankrobotics.com/emea/en/pepper; https://www.jibo.com; https://www.anki.com
 

complex software [De Santis et al. 2008]. Additionally, robots must be consis­
tently aware of their environment, including the people with whom they interact. 
Peri-personal space is a long-studied phenomenon in human–human interactions 
[Burgoon and Aho 1982, Sussman and Rosenfeld 1982, Burgoon 1991], and well-
documented in virtual agents in AR interactions [Slater et al. 2000, Ennis et al. 
2010], but establishing a “social safety zone” seems to be an especially salient issue 

when involving heavy or unfamiliar robots [Truong and Ngo 2016]. The problem 

of keeping robots at a socially acceptable distance from humans during inter­
actions in itself requires knowledge of computer vision, psychology, and robotic 
path-planning [Gupta et al. 2018]. Despite the importance of proprioception and 

path-planning, most robots on the market today do not have robust full-body sen­
sors capable of pro-actively avoiding collision, which means that some gestures 
could put the robot at risk of hurting itself or others. 

Another ongoing challenge in gesture research for social robotics is the map­
ping of communicative intent to expression onto the many abstract forms of exist­
ing devices (e.g., those found in Figure 7.3) [Hoffman and Ju 2014]. Attribution 

of internal states from abstract motions has long been chronicled and analyzed 

https://global.honda/innovation/robotics/
https://www.softbankrobotics.com/emea/en/pepper
https://www.softbankrobotics.com/emea/en/pepper
https://www.jibo.com
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[Dittrich et al. 1996, Pollick et al. 2001], but the field is currently in the earliest 
stages of developing a framework that is capable of mapping the many elements 
of expression onto abstract frames [Van de Perre et al. 2018]. The art of mapping 

communication onto abstract bodily forms that are human-understandable is yet 
to be mastered. 

Reach and Market Penetration 
One of the fundamental distinctions between VAs and SRs is the ease of reach­
ing users. VAs have been deployed on computers, web pages, tablets, and phones. 
Any device with a screen can be used to realize a VA application. The fact that 
they can be deployed so widely has special relevance for less-wealthy countries 
where the market penetration of cell phones is very high due to limitations in tradi­
tional landlines for telecommunications. For the user, there may be no significant 
additional hardware cost in using a VA application. SRs in comparison require the 

purchase of the robot and therefore are more of a luxury as opposed to a necessity 
given limited budgets. This is especially true of the current crop of SRs that can 

socialize but are incapable of performing useful physical actions that could justify 
the cost. 

Interdisciplinary Collaboration 
The fields of social robotics and virtual agents largely overlap. Both attempt to 

facilitate natural, socially fulfilling, and productive interactions in a wide range 

of fields, including medicine, teaching, and leisure. Both are concerned with the 

artificial agent’s theory of mind [Breazeal and Scassellati 1999] and see agents as 
tools to study wider psychological phenomenon under tight controls, such as gen­
der effects of gestures in human–computer interactions [Siegel et al. 2009, Feng 

et al. 2017]. Additionally, some properties known to be important in human inter­
pretation of gesture, such as smoothness, shape, and timing, are shown to transfer 
to gestures in robots [Bremner et al. 2009]. 

The need and call for collaboration is not new [Holz et al. 2009]. Some 

researchers have begun using generative models originally developed on virtual 
agents with social robots, notably Salem et al. [2010] and Le and Pelachaud [2011]. 
This is made possible through common frameworks such as the dominant SAIBA 

framework [Kopp et al. 2006], described in detail in Chapter 16 [ICMI 2012], which 

may be combined to create an agent-agnostic generative pipeline [Le et al. 2012]. 
However, work in this area needs much more exploration. Collaborations need 

more than experts in robotics and virtual agents, and must include professionals 
in interaction and aesthetic design, animation, market research, and other artists. 
Without a holistic team, robots continue to be designed according to physical 
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constraints, with behaviors, animations, and designs then being forced to work 

within the physical constraints of the robot. Rather than separate disciplines, for 
commercial success all aspects of a social robot or agent must be included when 

considering specific use cases and audiences. 
This is especially true in gestures, for which studies of interpretation of non-

humanoid motions are academically limited but anecdotally extremely expressive. 
Consider Disney’s many non-humanoid and non-verbal characters. In addition to 

actual robot characters Wall-E and Eve, animators use many cues to portray both 

character traits about animal characters as well as express a wide variety of commu­
nicative functions in non-humanoid ways. The transference of gesture properties 
onto non-humanoid characters without humanoid gesture components (described 

in Section 7.2.1), both virtual and robotic, is something that seems to be mastered 

by artists storytellers but not yet rigorously harnessed by academic researchers in 

either robotics or virtual agents. 

7.4 Current Challenges 
The technology and tools for modeling and generating gestures continues to 

advance. Further, larger datasets are being captured and new techniques are being 

used to process that data, further enabling machine learning approaches. These 

advances will provide new power to address challenges and opportunities. Here, 
we discuss what are some of those challenges. 

7.4.1 Gestures and the Context that Informs Their Use 
One of the key challenges we face in realizing gestures for social agents is the 

complex relation of gestures to the context of the interaction and overall struc­
ture of the discourse. As has been pointed out repeatedly by gesture researchers 
(e.g., Kendon [2000]), gestures, specifically their communicative function, are not 
simply a vivid illustration of the dialog text. For example, pragmatics concerns 
the context in which the interaction occurs and the impact of that context on 

deixis, turn-taking, across utterance structure of the interaction, presuppositions, 
and implicature. These factors have a profound effect on gesture use. An obvious 
example of this concerns deictic gestures. Utterances such as “You should talk to 

Michael,” or “Leave by the door on the right,” may or may not co-occur with a deic­
tic gesture. Another example is the cross utterance use of gestural space, where 

one utterance can locate an abstract concept in gesture space and in a subsequent 
utterance gestures can refer back to that location so as to refer to that original con­
cept. Another example of the extra-utterance factors impacting gestures concerns 
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how mental state leakage discussed above impacts gesture use and gesture per­
formance. Further the roles, cultures, and relational history of the participants 
impact their gestures. Yet another example is when gestures are used to convey 
information off the record or even contradict the content of the utterance. Broadly, 
a gesture can be a distinct speech act from the speech act realized by the utterance. 

These examples pose significant challenges to realizing rich gesturing in 

social agents, regardless whether the approach is end-to-end machine learning, 
rule-based, or some hybrid. Fundamentally capturing the above requires some 

approach to modeling or inferring this extra-utterance information. 
In the case of end-to-end machine learning approaches that map an utterance 

to gesture, the external context of the utterance, the overall structure of the interac­
tion, off-the record information to convey gesturally and arguably even the internal 
mental states and roles of the participants will not be apparent in the individ­
ual utterance text or prosody, making it unlikely that a mapping from utterance 

to gesture that takes into account just the utterance will capture the richness of 
human gestures. Even in the case of rule-based methods, there must be some way 
of modeling this information over the course of interaction. 

Complex Gesturing 
A related challenge concerns complex gesturing. As illustrated above, gesture cat­
egories are fluid and a single gesture often combines elements of many different 
categories, which are related to elements of the interaction through multiple cues. 
This complexity is compounded by the fact that gestures can both stand alone indi­
vidually as well as tie together pragmatic, semantic, and rhetorical elements that 
span utterances. 

In order to use these various sources of information to gesture effectively both 

for individual turns of dialog as well as coherently and naturally over an utter­
ance and multiple dialog turns, researchers in gesture as well as conversational 
AI will need to come together to create a computationally organized model that 
tracks semantic, environmental, conversational, and spatial context for interac­
tions. This underscores the tight relationship between gesture, speech, and the 

overarching interaction, and highlights how integrated gesture generation systems 
need to be with speech production and pragmatics in order for virtual agents to be 

as human-like as possible. 

Role of Participants 
A gesture model also needs to consider the participants themselves. In order to 

gesture appropriately, the social agent should take into account their conversa­
tional partner. Humans tailor gestures to the individual to whom we are speaking 
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[de Marchena and Eigsti 2014], which can have significant effects on how the 

speaker is perceived [Lee et al. 1985]. This can include some basic automatic 
responses like mirroring, but also encompasses extremely sophisticated complex 
modeling of the user’s mental state. Adjusting gestures to be smaller or slower 
when discussing sensitive topics, taking into account the age of the listener, or 
making large, pointed gestures to persuade a crowd are a few examples of acutely 
different circumstances during which the context must be detected, and the impli­
cations analyzed, to adjust gesture parameters [Poggi and Vincze 2008]. Crucially, 
this aspect of the context must affect both the selection as well as production of 
gestures. 

This raises the question of how an agent infers a conversational partner’s 
reactions. Are they, for example, being persuaded or amused by the agent’s use 

of expressive gestures? Clearly, an agent should select a gesture that is relevant 
and meaningful to its communicative function and consequently be able to infer 
whether that communicative function is being realized in the human partners in 

the interaction. This brings up issues of detecting user engagement and inferring 

mental state, as well as a growing issue of concern in gesture research: cross-
cultural interpretation. As the world becomes more interconnected and devel­
opers of social agents become increasingly interested in international market­
places, the importance of gesturing in a culturally sensitive way is gaining much 

greater importance. This includes not only the amount or style of gesture but gets 
into deeper issues of conceptual organization and metaphorical hierarchies that 
exist in different cultures (such as the “time as a line” metaphor discussed in 

Section 7.1.3). This means that metaphoric gestures that convey a particular mean­
ing in one culture may carry no or even an opposite meaning in another, which can 

result in critical misunderstandings between agents and users. 

7.4.4 Ambiguity 
On the other hand, one might well argue that human-like or “natural” behaviors 
may bring ambiguity. Instead of an agent conveying agitation by the dynamics of 
their gestures maybe it is just as or even more effective to put a sign over agent 
saying it is agitated or altering the color of the agent. Specifically, some work sug­
gests that when gestures are too complex [Saund et al. 2019] in the sense of a sin­
gle gesture conveying multiple pieces of information, they become less uniformly 
interpreted across subjects—muddling the message an agent may attempt to con­
vey. As the ability to produce complex gestures increases, researchers will need to 

consider different ways to measure tradeoffs in performance of generative models, 
from speed and complexity to optimizing for user understanding. 

Finally, one question that still remains as an overarching guiding principle is 
just how human-like does the behavior of the agent have to be. If one ascribes to the 
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media naturalness hypothesis, divergence from the naturalness of face-to-face inter­
action, broadly speaking but specifically here in terms of non-verbal behavior, can 

lead to an increase in cognitive effort, an increase in communication ambiguity, 
and a decrease in physiological arousal [Kock 2005]. 

The Application 
Unquestioningly, these tradeoffs will be context-dependent, specifically applica­
tion dependent. In a social skills training application to train doctors to break bad 

news to patients [Kron et al. 2017, Ochs et al. 2017], naturalness is a paramount 
consideration in part because people are being trained to deal with ambiguities. 

In contrast, a learning application for children that seeks to increase engage­
ment as a child learns to count may forego any attempt at naturalness. Here there 

are opportunities to draw on a wide range of research. There is animal and human 

research on supernormal stimuli that can provoke primal responses in people 

[Barrett 2010]. The performance arts, specifically theatre and dance, can provide 

more stylized and less ambiguous means of conveying information. Notably, social 
agent researchers [Marsella et al. 2006, Neff et al. 2008] have looked at Delsarte’s 
work on gesture that heavily influenced early silent film acting as a means of ges­
ture selection and performance, as well as Laban movement analysis to manipulate 

the animation of expressive gestures [Chi et al. 2000]. 

Impact 
This discussion underscores the critical challenge of understanding and measur­
ing the impact of gestures on human participants. 

One way to evaluate this impact across large demographic populations is 
through increasingly popular crowdsourcing platforms [Breazeal et al. 2013, Morris 
et al. 2014]. In addition to evaluating a social agent’s gesture performance, crowd-
sourcing opinions makes a combined approach to gesture generation possible: 
generative models that use crowd or expert input to create and refine generative 

models of dialog for a social agent [Feng et al. 2018] could be extended to ges­
ture. Research has begun using crowd feedback in model tuning to adjust ges­
tures according to different social and conversational contexts. By using machine 

learning to uncover patterns in user preference and determine salient features 
in gesture motion, we may be able to increase model performance and produce 

gestures that are more contextually appropriate and complex than simply using 

top–down expert-driven rule-based techniques or end-to-end deep learning. While 

this is a relatively new technique in the field of gesture generation, finding ways 
to seamlessly incorporate human judgements into the generation process is a 
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promising avenue for producing natural, meaningful, and relevant gestures in 

social artificial agents. 

7.5 Future Directions 
While this chapter has discussed state-of-the-art implementations of gestures in 

social agents, there are many promising horizons for future research that will allow 

still better gesture performances as well as insights into the cognitive processes 
behind gesture production. 

7.5.1 Big Data and Gesture 
It is impossible to talk about the future of gesture research without addressing the 

research field of big data. Using neural networks to create generative models of ges­
ture for individual speakers is a present reality. Ginosar et al. [2019] present a model 
that produces gestures built off of L1 regression and adversarial neural networks. 
This model produces gestures that are nearly indistinguishable from the original 
speaker in many cases, but which are also driven exclusively by audio inputs. 

This approach simplifies the inherently cognitively driven and complex nature 

of gesture. This model generates gesture from audio, not communicative intent. 
This attempts to drive gesture behavior from smaller spaces (e.g., prosody) because 

the entire space of gesture meaning does not have a neat mapping. This model, for 
example, does not handle the complexity of semantics, rhetoric, or affect (aside 

from how those elements are expressed in voice qualities). It could be argued that 
the middle layers of these networks implicitly derive other salient features. How­
ever, the gestures that result from these methods have been judged by naturalness 
with a particular piece of audio, not communicated message. 

This is problematic as gestures have the ability to change the interpretation of 
the same audio [Jamalian and Tversky 2012, Lhommet and Marsella 2013]. Without 
a principled way to deal with semantics, machine learning techniques currently 
remove meaning and communicative intention out of the equation when it comes 
to gesture generation. 

So, the challenge remains to move to deep learning approaches that have 

the potential to generate not only extremely natural beat gestures but also more 

complex, nuanced, and subtle gestures as well. 

7.5.2 Using Gesture to Make Inferences About Cognition 
Using deep learning to generate gestures, however, misses the deeper complexity of 
gesture research: the cognitive relationship between thought and behavior. While 

neural networks given sufficient data may produce extremely high-quality behav­
ior, it sheds less light on the way humans actually store, process, generate, and then 
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transmit thoughts. For artificial social agents to be truly human in their expres­
sion, an alternative view is to assume that they must abide by the same cognitive 

processes and limitations as we do.2 

This possibility is eloquently expressed by the theory of embodied cognition 

[Hostetter and Alibali 2008]. The theory of embodied cognition states that many 
features of cognition are shaped by the human experience of a physical body. This 
includes both high-level mental constructs (such as concepts and categories) as 
well as performance on various cognitive tasks (such as reasoning or judgment). 
According to this hypothesis, the organization of human thought is limited by the 

constraints of our body not only neurologically but by our mental incapacity to 

imagine what it would be like to exist without our body. This drives our physical 
metaphors, both gestural and in language, and indeed may be reflected in a hier­
archy of metaphors in our own thoughts. With this in mind, it may be impossible 

to create a perfectly human-like gestural model for social artificial agents unless 
their thoughts are organized like ours. 

In this view, part of the goal modeling gestures is to make inferences about our 
own cognition that may be applied to social artificial agents. By demonstrating 

correlations between expressed thoughts and physical motions, we may uncover 
elements of this mental hierarchy to learn about the structure and organization of 
our own thoughts. These insights can propel both the field of cognitive science as 
well as human–computer social interaction. 

“Better than Human” 
One of the common assumptions in the design of virtual agents is that human 

appearance and behavior is a gold standard for effective face-to-face interaction. 
This assumption is based on several factors. The non-verbal behaviors of human– 

human interaction are both our evolutionary heritage and socially learned. There­
fore, an agent using these behaviors will be able to leverage the various deliber­
ate inferences and automatic processes that are in play when we perceive these 

behaviors. 
Human–human interaction is also often a guiding principle informing the 

design of social robots. Of course, the behaviors invariably get distilled down when 

realized in a robot, often due to mechanical constraints. For example, subtlety 
in dynamics may be removed, degrees of freedom may be removed such as not 
having fully functional hands. Some channels may be removed altogether such as 
eliminating eyebrows. 

2. Although it is left to context whether the goal of an agent is to be human-like, or communica­
tively efficient, or agreeable to talk to, etc. 
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(a) (b)

Figure 7.4	 Examples of interactive wearables from Behnaz Farahi. (a) Iridescence. (b) Caress of 
the Gaze. 

The use of human–human interaction as a design goal or even a guiding princi­
ple risks ignoring several factors. We are very adaptive, and in a persistent relation 

we could adapt to an artificial agent’s behavior. That adaptation in turn may even 

help to build a stronger bond with an agent, for example, as a child requires a 

shared secret mode of interaction with an agent. Additionally, human non-verbal 
behavior is often ambiguous, and we may want to avoid that ambiguity in a particu­
lar application. Rather the focus may be on the most effective way to communicate 

the information, most effective in terms of an application’s goals. Finally, by lim­
iting ourselves to human non-verbal modalities, we ignore that we could employ 
novel non-human modalities. 

For example, the work of Behnaz Farahi [2016, 2018, 2019], investigates novel 
modalities in interaction. Her “bio-inspired” work on the interactive installation 

Iridescence (Figure 7.4(a), [Farahi 2019]) draws inspiration from the gorget of 
the male Anna’s Hummingbird that changes color during courtship. Iridescence 

changes colors and make patterns in response to observer’s movements and facial 
expressions. Similarly, Caress of the Gaze is a wearable that explores how “clothing 

could interact with other people as a primary interface [Farahi 2016].” It uses eye-
gaze tracking technologies to respond to the observer’s gaze. Such work explores 
the potential of opening up new modalities in face-to-face interaction. 

7.6 Summary 
In this chapter we discussed the many ways that gesture enhances communi­
cation. Gesture acts as a guide for dialog, an influence on the observer, and a 
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reflection of the speaker’s internal beliefs. We briefly summarized a long history 
of gesture studies, including myriad ways to classify gesture by both motion and 

communicative function. We discussed how these functions, combined with indi­
vidual and cultural context, may reveal information about the speaker’s attitudes 
and mental states, as well as more complex information about an individual’s 
cognition. 

We then discuss current implementations of gestures in virtual agents. There 

are many ways to realize compelling gestures in social agents, but these must be 

centered on the communicative function of the gesture. Using frameworks that 
abstract implementation from communicative function allows researchers to sep­
arate the problem of gesture selection and animation. Both machine learning 

and rule-based techniques offer promising solutions to these difficulties but face 

similar challenges in terms of gesture collection and model evaluation. 
These models may be deployed on either virtual agents or social robots, with 

the latter presenting great physical challenges but offering potentially greater 
impact on the viewer. Abstractions over gesture architectures are necessary to 

foster interdisciplinary collaboration between these two closely related mediums. 
Despite recent advancements, gesture generation still faces many challenges, 

such as generating conversationally (semantically) relevant movements, incorpo­
rating complex or ambiguous gestures, and considering the role of the viewer when 

modulating gesture behavior. These must all be taken into consideration in order 
to achieve the greatest impact of gesture on an agent’s audience. 

New technology constantly advances techniques for studying gesture for both 

data collection and computational modeling of the physical gesture performance. 
In particular, superhuman stimuli offer unique avenues through which to study 
the impact of gesture, going beyond the possibilities of human–human studies. 
Additionally, collaborations in machine learning and the advancement of com­
putational hardware and infrastructure allow more resources to use big data and 

end-to-end modeling of gesture behavior. These new technologies present oppor­
tunities to understand gesture’s relationship to the semantic context in which it 
is produced, which will lead to new insights in human behavior, communication, 
and cognition. 
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