
Reinforcement Learning for Adaptive Theory of Mind
in the Sigma Cognitive Architecture

David V. Pynadath1, Paul S. Rosenbloom1,2, and Stacy C. Marsella3

1 Institute for Creative Technologies
2 Department of Computer Science

University of Southern California, Los Angeles CA, USA
3 Northeastern University, Boston MA, USA

Abstract. One of the most common applications of human intelligence is so-
cial interaction, where people must make effective decisions despite uncertainty
about the potential behavior of others around them. Reinforcement learning (RL)
provides one method for agents to acquire knowledge about such interactions.
We investigate different methods of multiagent reinforcement learning within the
Sigma cognitive architecture. We leverage Sigma’s architectural mechanism for
gradient descent to realize four different approaches to multiagent learning: (1)
with no explicit model of the other agent, (2) with a model of the other agent as
following an unknown stationary policy, (3) with prior knowledge of the other
agent’s possible reward functions, and (4) through inverse reinforcement learn-
ing (IRL) of the other agent’s reward function. While the first three variations
re-create existing approaches from the literature, the fourth represents a novel
combination of RL and IRL for social decision-making. We show how all four
styles of adaptive Theory of Mind are realized through Sigma’s same gradient
descent algorithm, and we illustrate their behavior within an abstract negotiation
task.

1 Introduction

Human intelligence faces the daily challenge of interacting with other people. To make
effective decisions, people must form beliefs about others and generate expectations
about the behavior of others to inform their own behavior. This cognitive capacity for
Theory of Mind distinguishes social interaction from the decision-making that people
do in isolation [21]. We therefore expect that a system capable of artificial general in-
telligence (AGI) would provide natural support for Theory of Mind. We are interested
here in how Theory of Mind capabilities may be realized within Sigma (Σ), a nascent
cognitive system—an integrated computational model of intelligent behavior—that is
grounded in a cognitive architecture, a model of the fixed structure underlying a cogni-
tive system [9].

In prior work, we have demonstrated this architecture’s ability to support Theory
of Mind within canonical examples from the game theory literature [13]. However, the
games previously investigated made each agent’s payoff functions common knowledge
to both sides, a luxury not afforded in most social interactions. Reinforcement learn-
ing (RL) has proven a successful method for agents to make effective decisions in the

In Proceedings of the Conference on Artificial General Intelligence, to appear, 2014.



face of such uncertainty [19]. It is thus not surprising that the multiagent literature has
tried a variety of knowledge structures and learning mechanisms to implement decision-
making in such interactive environments [3].

Sigma’s cognitive architecture provides a mechanism for gradient descent to update
functional representations of an agent’s knowledge, a mechanism that has supported a
capability for reinforcement learning in prior work [15, 17]. Here, we reuse this same
general learning mechanism across different knowledge representations of a social in-
teraction to arrive at four different models of the agent with which it is interacting:

Section 4: without explicitly modeling the other agent [10]
Section 5: with a stationary policy model of the other agent (a 1-level agent [5, 6])
Section 6: with a set of possible reward functions for the other agent [4, 12]
Section 7: by inverse reinforcement learning (IRL) of the other agent’s reward [11]

The Sigma agent is able to leverage the same gradient-descent mechanism in learn-
ing these various models. It also leverages gradient descent to learn its own policy of
behavior based on its current model of the other agent. In realizing the first three varia-
tions, we re-create existing multiagent decision-making mechanisms from the literature.
In the fourth variation, we arrive at a novel combination of RL and IRL for multia-
gent decision-making. Thus, by examining permutations in the application of Sigma’s
gradient-descent mechanism, we are able to explore a broad space of multiagent learn-
ing, without any changes to the underlying cognitive architecture.

We examine the behavior of each of these variations within an abstract negotiation
task (described in Section 3). By analyzing the resulting behaviors when interacting
with the same fixed agents, we can compare the different models used (described in
Section 8). We are thus able to show how the Sigma cognitive architecture can realize
diverse adaptive social behavior by leveraging the same reinforcement learning mecha-
nism with different models at the knowledge level.

2 Sigma

Sigma’s cognitive architecture is built upon graphical models [7]. Graphical models
provide a general computational technique for efficient computation with complex mul-
tivariate functions by leveraging forms of independence. Sigma leverages this generality
through a core knowledge structure—the conditional—that provides a deep blending of
the forms of conditionality found in both rules and probabilistic networks.

Sigma’s long-term memory comprises a set of these conditionals, which are jointly
compiled into a single factor graph [8] at the level below. Memory access occurs by
passing messages in this graph, via the summary product algorithm [8], until qui-
escence; that is, until there are no more messages to send. Each message is an n-
dimensional piecewise linear function that is defined over an array of rectilinear re-
gions. These piecewise linear functions can approximate arbitrary continuous functions
as closely as desired, as well as be restricted to represent both discrete probability distri-
butions and relational symbol structures. Working memory consists of a set of periph-
eral nodes in the graph that provide fixed evidence during solution of the long-term-
memory graph.



The Sigma cognitive architecture provides a model of sequential action, during
which operators are selected and applied to achieve goals (or maximize utilities) [14].
The core cognitive (decision) cycle in Sigma involves message passing until quiescence,
with the results then used in deciding how to modify working memory. In prior work,
we have demonstrated Sigma’s ability to support multiple cognitive capabilities, such
as problem solving [14], mental imagery [16], Theory of Mind [13], and learning [15].

Learning occurs by altering functions in conditionals at decision time. Sigma’s
learning mechanism was inspired by earlier work showing that gradient descent was
possible in Bayesian networks, much as in neural networks, but without the need for an
additional backpropagation mechanism [18]. In Sigma, gradient-descent learning mod-
ifies conditional functions, by interpreting incoming messages as gradients that are to
be normalized, multiplied by the learning rate, and added to the existing function [17].

Reinforcement learning within Sigma leverages gradient descent to learn Q val-
ues over multiple trials, given appropriate conditionals to structure the computation
as needed. One conditional proposes actions for selection, weighted by the Q values
learned so far. To enable Q values to determine which action to choose, this proposal
conditional is augmented to use them as operator weights (alternatively viewed as nu-
meric preferences). For example, if the initial Q values are uniform, then the agent will
choose its actions randomly in the early stages of learning.

If direct evidence were provided for the Q values, it would be trivial to use gradi-
ent descent to learn them without needing to invoke reinforcement learning. However,
without such evidence, RL is the means by which rewards earned in later steps propa-
gate backwards to serve as input for learning Q values for earlier steps. This occurs via
a combination of: (1) learning to predict local rewards from the externally provided ev-
idence in the current state and (2) learning to predict both future rewards and Q values
by propagating backwards the next state’s expected reward [17].

To learn to predict future rewards, we add a conditional that examines the current
state and operator, along with the predicted next state (as given by the transition func-
tion) and that state’s predicted local reward and future discounted reward. This condi-
tional leverages an affine transformation to add the next state’s predicted local reward
to the distribution over its predicted future reward, and a coefficient to discount this
sum. RL then results from using the messages that are passed back to the conditional
functions as gradients in learning Q values and discounted future rewards.

3 Negotiation

We investigate different applications of Sigma’s gradient-descent learning mechanism
within a bilateral negotiation task. Two agents, A and B, make a series of offers and
counteroffers to arrive at an allocation of two apples and two oranges. On its turn,
each agent selects an operator (Operator-A and Operator-B), either making an offer
or accepting the current offer on the table. The current offer on the table is represented
by a number of Apples and Oranges, the combination of which represent the fruits
that A would receive if the offer were accepted. B would receive the fruits not allocated
to A.



In this paper, we adopt the perspective of A, who receives a Reward-A that in-
creases linearly with the number of total fruits. An agent can offer only one type of
fruit at a time, so both agents’ operators, Operator-A and Operator-B, contain: {offer
0 apples, offer 1 apple, offer 2 apples, offer 0 oranges, offer 1 orange, offer 2 oranges,
accept}. If either agent chooses to accept the current offer, then the negotiation termi-
nates with a final allocation based on the current offer on the table. It is straightforward
to encode this deterministic transition function within Sigma conditionals.

Combining the transition and reward functions can generate the reward for A’s ac-
tion selection one time step into the future. To predict long-term rewards further into the
future, A can use its experiences in repeated negotiations to learn Q values, Q-A, across
possible state-operator combinations [20]. We represent these Q values as a distribution
over [0,10), the same scale as Reward-A. A can learn this distribution by deriving pro-
jected future rewards, Projected-A, from the observed immediate rewards and the state
transitions it experiences.

To reason about the future rewards that result from B’s action, A can use a variety
of possible models. In Section 4, A naively treats this transition as simply part of the
environment and does no modeling of B’s operator selection. In Section 5, A models B
as following a stationary policy of behavior (similar to fictitious play [2]) so that it can
learn the distribution of actions underlying the state transitions during B’s turn.

In Sections 6 and 7, A uses a Theory of Mind to assume that B behaves according
to a reward function structured like its own. In Section 6, A assumes that this reward
function is drawn from a finite set of candidates. Such prior knowledge is not always
available, so, in Section 7, A uses inverse reinforcement learning to update a belief about
B’s reward function. In both cases, A can derive a policy of behavior from a hypothe-
sized reward function for B, and use it to generate an expected probability distribution
over B’s operator selection and the implied state transitions.

We apply these variations in combination with two possible variations on B:

Cooperative: B wants the same outcome as A (i.e., A has all of the fruit).
Competitive: B is happy to let A have the oranges, but it wants the apples for itself.

We provide A with a static target by not having B model A in return. In other words,
B’s behavior is a stationary function of the current offer on the table. The cooperative
B will accept when the current offer is 2 apples and 2 oranges; otherwise, it will make
an offer that moves the negotiation closer to that target offer, with two apples being
offered before two oranges. The competitive B behaves similarly with respect to its
target offer of 0 apples and 2 oranges.4 Both versions of B make apples a higher priority
than oranges, to break up the symmetry that would make many of the negotiation states
equivalent. For example, a cooperative B prefers 2 apples and no oranges over no apples
and 2 oranges. To complicate A’s learning problem further, we make B’s behavior non-
deterministic by introducing a 10% chance of deviating from the optimal action to one
of its suboptimal actions.

4 A truly competitive B that wanted both the oranges and apples would be an uninteresting
opponent, in that any action by A would not move B from its target offer of 0 apples and 0
oranges.



4 Learning with No Model of the Other Agent

We first build a Sigma agent that learns its Q values without any explicit modeling of
B’s behavior [10]. Figures 1a and 1b show an influence diagram representation of the
conditionals that represent A’s reasoning during A’s and B’s turns, respectively. On its
turn, in Figure 1a, A uses its current Q values (Q-A) to inform its selection of Operator-
A (a rectangular decision node) given the current state of the negotiation (Applest,
etc.). It then observes the subsequent state (Applest+1, etc.) and the reward that results
(Reward-A, a diamond-shaped utility node).

(a) on A’s own turn (b) on B’s turn

Fig. 1. Graph for computing and learning A’s projected rewards with no model of B

In our negotiation model, the agents receive reward only when an offer is accepted
by either party. A propagates this final reward back over the offer on the table (the
dashed line from Reward-A to Projected-At+1 in Figure 1a) and then backs up those
values to the state leading to the final accepted offer (the dashed line from Projected-At+1

to Projected-At). The messages that are passed back to the conditional functions then
serve as gradients in learning the projected future rewards [17]. Similar gradient de-
scent using the messages passed along the dashed line from Projected-At+1 to Q-A
then supports learning the Q values from these projected future rewards.

Figure 1b shows the graph for the rewards that A can expect when it is B’s turn.
In this case, the operator is an observation from A’s perspective (as opposed to its own
decision). The message passing and gradient descent proceed just as on A’s turn.

As A encounters various negotiation states, Sigma’s conditionals will generate mes-
sages for the current state and selected operator, leading to updates to the projected fu-
ture rewards and, on A’s turn, the Q values for those states. The agent can then use the
learned Q values in its operator selection process by translating the distribution over Q
values into an expected value for candidate operators, as shown in the forward direction
in Figure 1a. A then chooses its operator through a softmax over these expected values,
allowing it to choose high-value operators with high probability, while also allowing it
to explore the negotiation space during learning.



Table 1 shows the expectation over A’s Q values after 1000 cycles of interacting with
a cooperative B, averaged over 60 runs. The boldfaced number represents the operator
having the highest expected Q value in each state. For the most part, A has learned to
accept when the offer on the table reaches its best possible outcome: two apples and
two oranges. However, the other operators in that state also have high values, because,
in the cooperative setting, even if A changes the offer, B will seek to re-establish it on
its subsequent turn. The optimal actions in the other states (offering either two apples
or two oranges) all have similarly high values, although there are some states where
another operator has a higher value. Again, B’s cooperative nature means that accepting
a suboptimal offer is the only really “bad” choice, but this learning method has still
demonstrated an effective ability to learn discriminatory Q values across its operators.

Table 1. Q values with no explicit model of B, who is cooperative

Apples,Oranges 0,0 0,1 0,2 1,0 1,1 1,2 2,0 2,1 2,2
Q(Apples,Oranges, accept) 4.88 5.01 5.62 4.72 5.07 6.59 4.00 5.68 9.49
Q(Apples,Oranges, offer-0-apples) 6.05 5.85 5.74 5.39 6.50 7.26 6.39 7.20 9.46
Q(Apples,Oranges, offer-0-oranges) 5.54 5.39 5.28 6.01 5.80 6.72 7.56 8.00 9.46
Q(Apples,Oranges, offer-1-apples) 5.72 5.96 6.57 5.89 5.77 7.72 6.56 8.17 9.48
Q(Apples,Oranges, offer-1-oranges) 5.81 5.96 5.30 6.23 6.59 7.01 7.50 8.25 9.46
Q(Apples,Oranges, offer-2-apples) 6.58 6.24 6.27 5.88 6.72 7.62 7.22 8.69 9.49
Q(Apples,Oranges, offer-2-oranges) 5.67 5.43 6.84 5.93 6.21 7.15 7.47 8.55 9.49

5 Learning with a Probabilistic Model of the Other Agent

A’s update of its projected future rewards in Figure 1b does not maintain any informa-
tion about the likelihood of the observed transitions on B’s turn. Early work on mul-
tiagent learning instead leveraged an assumption that other agents may be following
a stationary policy of behavior, represented as a probability distribution over operator
selection conditioned on the current state [5, 6]. In this section, we enable A to model B
as such a 0-level agent by learning a stationary policy of B’s behavior. We can represent
this policy as a probability distribution, π-B, over B’s operator selection, as a function
of the current offer on the table. Figure 2 shows the graphical representation of the mod-
ified conditionals for A’s computation that include this policy. On B’s turn, A receives
direct evidence of B’s behavior that it uses to update the functional representation of
π-B (the dashed line from Operator-B in Figure 2).

A can now use its beliefs about B’s policy to update its projected future rewards. As
shown in Figure 2, the backup of Projected-At+1 to Projected-At is now weighted by
the probability of the observed action, as specified by π-B. Thus, A can minimize the
impact that observations of B’s unlikely suboptimal actions will have on its learning. In
such cases, the low probability for π-B of Operator-B will scale the message along the
link to Projected-At. This scaling allows A to incorporate its accumulated expectations
about B into its learning of Q values associated with the state of the negotiation. On A’s



Fig. 2. Graph for A’s projected rewards on B’s turn with a stationary policy model of B

own turn, these expectations provide no information, so A backs up future rewards just
as in Figure 1a.

Table 2 shows the probability of B’s true optimal action (which it chooses with
90% probability) within A’s learned π-B policy. Across all states and both versions of
B, the optimal action has the highest probability. However, even after 1000 cycles, the
values still deviate a significant amount from the correct 90% value. We postpone an
investigation of the impact of this learning on A’s performance until Section 8.

Table 2. Learned probability of B’s optimal action

Apples,Oranges 0,0 0,1 0,2 1,0 1,1 1,2 2,0 2,1 2,2
π-B(Operator-B∗) in cooperative 0.64 0.63 0.62 0.42 0.49 0.56 0.57 0.64 0.53
π-B(Operator-B∗) in competitive 0.70 0.58 0.44 0.60 0.55 0.59 0.41 0.55 0.63

6 Learning with a Set of Reward Functions for the Other Agent

Although the modified conditionals of Section 5 explicitly model B, they treat it as an
unknown stochastic process, rather than using a Theory of Mind to treat it as an agent-
driven one. For example, A’s Theory of Mind might inform it that B is also seeking to
maximize its own reward function. We can hypothesize that B belongs to one of a finite
set of possible models, each with a corresponding reward function. Such a representa-
tion would correspond to Bayesian approaches to multiagent modeling that use sets of
models to specify the beliefs that one agent has about another [4, 12].

To represent such models, we introduce variables for the Reward, Projected fu-
ture rewards, and Q values of B, analogous to A’s. However, these variables have an
additional parameter, m ∈ Model-of-B, representing the possible reward functions of
B (e.g., cooperative vs. competitive). On B’s turn, A will observe Operator-B and the
resulting negotiation state. Figure 3a is a graph of A’s model of B’s decision-making
analogous to Figure 1a for A’s. Using this graph, A can deterministically derive the val-
ues of Reward-B from each of the candidate reward functions applied in the resulting



state. It can then propagate that derived value back to Projected-B, which is propa-
gated, in turn, back to Q values for B (Q-B), all contingent on each candidate model,
m.

(a) Projected-B on B’s turn (b) Projected-A on A’s own turn

Fig. 3. Graph for projected rewards with two hypothesized reward functions for B

Sigma translates these learned Q values for each m ∈ Model-of-B into policies of
behavior for B: π-B, as in Section 5. Here, rather than learning the distribution directly,
A uses a softmax to translate the Q values in Operator-B into a Boltzmann distribution
over selection, conditioned on the current state. A can incorporate this distribution into
updating its projected future rewards on B’s turn as previously illustrated in Figure 2.

Given Q-B(m) for each operator, A can update its beliefs about the likelihood of
these models. The dashed lines to Model-of-B in Figure 3a represent the messages that
translate the observed Operator-B and the Q-B values for that observation under each
model, m, into a gradient over the distribution over models. For example, the models
for which the observed action has higher Q values will have an increased likelihood
in the posterior distribution. A will incorporate this distribution into an expected value
over Q-A across the possible values for Model-of-B (shown in Figure 3b).

We gave A a Model-of-B containing our two candidate reward functions (cooper-
ative and competitive) and let it interact with B of both types. After 1000 cycles, A’s
belief over Model-of-B is so certain that the likelihood of the incorrect model is less
than 0.1%. We again postpone an investigation of the impact of this modeling on A’s
performance until Section 8.

7 Learning with IRL of the Other’s Reward

We will not always have a priori knowledge of another agent’s possible reward func-
tions. However, we could assume that B has some fixed reward function that is guiding a
rational decision-making process. Inverse reinforcement learning leverages such an as-
sumption into an ability to reason backward from observed behavior to the observed



agent’s reward function [11]. Existing agents have used IRL to mimic an observed
agent’s behavior by inferring its underlying reward function [1]. In this work, we adapt
this same mechanism within Sigma to arrive at a novel application of IRL to learning a
policy for interacting with another (potentially adversarial) agent.

The graph in Figure 4 illustrates this IRL process in Sigma. A uses observations
of Operator-B to learn a frequency count, π-B, just as in Section 5’s stationary policy
model. However, rather than use this policy directly, we leverage our knowledge that
there is an underlying optimization process generating this policy. Via a process that
required a small extension to Sigma, the action likelihoods of π-B are re-interpreted in
terms of the expected values of Q distributions. We then use a softmax to translate these
Q values into a new Boltzmann distribution, π-Q-B (similar to Section 6’s version of
π-B).

Fig. 4. Graph for IRL on B’s turn

Just as A backs up projected reward in a future state onto the Q value for the operator
that led to that state, we can now reason in the inverse direction for B. In other words,
the learned Q value for B’s selected operator implies the projected future reward in the
resulting state. However, because of the potential noise and error in this projection, we
weight each update by the likelihood, π-Q-B, of the observed operator.

To infer B’s reward from these projected future rewards, we exploit the fact that
when an agent accepts an offer, both agents receive an immediate reward and the ne-
gotiation terminates. Therefore, when B accepts an offer, its projected future rewards
include the immediate reward from the accepted offer and nothing else, because there
are no more future states. By observing the offers that B accepts, A can thus propagate
its Projected-B values to a Reward-B model.

Table 3 presents the expectation over the reward function that A’s IRL generates
after 1000 cycles with cooperative and competitive Bs. The bold entries show that the
learned Reward-B successfully identifies B’s optimal outcomes. Furthermore, both ver-
sions of B value apples (positively or negatively) more than oranges, which the learned
Reward-B captures as well. In particular, the cooperative entries with two apples and



the competitive entries with zero constitute six out of the seven highest expected re-
wards. We will examine the impact of IRL on A’s performance in the next section.

Table 3. A’s expectation about B’s reward function after 1000 cycles in IRL agent.

Apples,Oranges 0,0 0,1 0,2 1,0 1,1 1,2 2,0 2,1 2,2
cooperative 0.23 0.27 0.19 0.22 0.23 0.25 0.25 0.36 0.41
competitive 0.26 0.36 0.40 0.21 0.22 0.25 0.23 0.24 0.20

8 Experimental Comparison

We can compare the behavior of the four versions of A from Sections 4–7 within the
same context by measuring cumulative statistics over their interactions with our two
versions of B. To measure the flexibility of the learned policies, we also examine how
effectively each variation of A can transfer what it has learned to a new situation. There-
fore, after the first 1000 cycles with a cooperative (competitive) B, we switch B’s reward
function to be competitive (cooperative), and let A continue interacting for 250 more
cycles.

Table 4. Comparison of four variations vs. cooperative and competitive versions of B

Modeling No Model Stochastic Policy Reward Set IRL

msgs/decision 445 483 675 587
msec/cycle 306 309 1,343 560
A’s Reward (vs. cooperative B) 7.11 7.13 7.12 7.17
A’s Reward (after switch) 5.82 5.80 5.85 5.82
A’s Reward (vs. competitive B) 5.88 5.88 5.83 5.85
A’s Reward (after switch) 7.00 6.96 7.08 6.99

Table 4 shows that moving from the “no model” case of Section 4 to the “stochastic
policy” model of Section 5 has minimal impact on the number of messages and amount
of time required for the graph to reach quiescence. On the other hand, when including
a model of B’s reward function (Section 6’s “reward set” and Section 7’s “IRL” varia-
tions), the bigger graphs lead to significant increases in the messages and time required.
The “reward set” variation requires the most messages and time, due to the explicit
Model-of-B and the parameterization of Reward-B, Projected-B, Q-B, and π-B as a
function of the two possible models. The “IRL” variation avoids this doubling in the size
of messages regarding the B nodes, so it is able to model B’s reward function without
as much of an increase in computational time incurred by the “reward set” method.

Table 4 also shows that all four methods achieve roughly the same reward, with a
dropoff between the cooperative and competitive cases. We expect such a dropoff be-
cause of B’s unwillingness to accept or offer A’s optimal outcome in the latter case.



Given the differences among our methods, the comparable performance is a bit surpris-
ing. On the other hand, all four variations use a similar structure for A’s Q values, and
B’s stationary policy lends itself to RL. Sigma’s message passing quickly converges to
the best response, regardless of the knowledge representation. B’s behavior is thus not
complicated enough to draw out deeper differences among our learning methods.

The midstream switch of B from cooperative to competitive (or vice versa) does
elicit some distinguishing characteristics. Table 4 shows that the “reward set” version
of A does slightly better than the other three after both switches. During the first 1000
cycles, this variation has already learned Q-B for both cooperative and competitive Bs.
It can thus quickly detect the switch through RL of Model-of-B and use its Q-B(m) to
learn a modified Q-A. On the other hand, this advantage is still relatively small. Further
analysis is thus needed to gain more insight into the differences across these algorithms.

9 Conclusion

We have applied Sigma’s architectural capability for gradient descent across four dif-
ferent models of multiagent learning. Three of these models re-create multiagent RL
algorithms from the literature, while the fourth represents a novel combination of RL
and IRL for decision-making in combination with Theory of Mind about another agent.
The four permutations of graphs represent only a subset of the possible structures that
we could experiment with. By introducing new nodes or changing the link structure, we
can alter A’s knowledge-level representation. Re-application of the same architectural
mechanism will enable reinforcement learning of that knowledge, allowing us to easily
study the impact that the modified graph has on multiagent interaction.

Our current experimental domain was able to validate the correctness of our various
algorithms. However, an enriched domain would provide more insight into the differ-
ential impact of the various modeling assumptions. In particular, B’s stationary policy
of behavior forms a static target for A to learn. One very easy way to achieve a more
realistic multiagent setting would be to expand our experiments into a true multiagent
setting, by giving B the same learning capabilities we gave to A. By assigning different
combinations of our learning algorithms to A and B, we will be able to better differenti-
ate their adaptive behavior by applying them to a more complex target agent. With this
enriched experimental setting, Sigma’s general capability for multiagent learning opens
up a promising line of future research into RL-based Theory of Mind.

Acknowledgments

This work has been sponsored by the Office of Naval Research and the U.S. Army.
Statements and opinions expressed do not necessarily reflect the position or policy of
the U.S. Government.

References

1. Abbeel, P., Ng, A.Y.: Apprenticeship learning via inverse reinforcement learning. In: ICML,
ACM (2004) 1–8



2. Brown, G.W.: Iterative solution of games by fictitious play. Activity analysis of production
and allocation 13(1) (1951) 374–376

3. Busoniu, L., Babuska, R., De Schutter, B.: A comprehensive survey of multiagent reinforce-
ment learning. IEEE Transactions on Systems, Man, and Cybernetics 38(2) (2008) 156–172

4. Gmytrasiewicz, P., Doshi, P.: A framework for sequential planning in multi-agent settings.
JAIR 24 (2005) 49–79

5. Hu, J., Wellman, M.P.: Multiagent reinforcement learning: theoretical framework and an
algorithm. In: ICML. (1998) 242–250

6. Hu, J., Wellman, M.P.: Learning about other agents in a dynamic multiagent system. Journal
of Cognitive Systems Research 2 (2001) 67–79

7. Koller, D., Friedman, N.: Probabilistic graphical models: principles and techniques. MIT
Press (2009)

8. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product algorithm.
IEEE Transactions on Information Theory 47(2) (2001) 498–519

9. Langley, P., Laird, J.E., Rogers, S.: Cognitive architectures: Research issues and challenges.
Cognitive Systems Research 10(2) (2009) 141–160

10. Littman, M.L.: Markov games as a framework for multi-agent reinforcement learning. In:
ICML. Volume 94. (1994) 157–163

11. Ng, A.Y., Russell, S.J.: Algorithms for inverse reinforcement learning. In: ICML. (2000)
663–670

12. Pynadath, D.V., Marsella, S.C.: PsychSim: Modeling theory of mind with decision-theoretic
agents. In: IJCAI. (2005) 1181–1186

13. Pynadath, D.V., Rosenbloom, P.S., Marsella, S.C., Li, L.: Modeling two-player games in the
Sigma graphical cognitive architecture. In: AGI. (2013)

14. Rosenbloom, P.S.: From memory to problem solving: Mechanism reuse in a graphical cog-
nitive architecture. In: AGI, Springer (2011) 143–152

15. Rosenbloom, P.S.: Deconstructing reinforcement learning in Sigma. In: AGI. (2012)
16. Rosenbloom, P.S.: Extending mental imagery in Sigma. In: AGI. (2012)
17. Rosenbloom, P.S., Demski, A., Han, T., Ustun, V.: Learning via gradient descent in Sigma.

In: ICCM. (2013)
18. Russell, S., Binder, J., Koller, D., Kanazawa, K.: Local learning in probabilistic networks

with hidden variables. In: IJCAI. (1995) 1146–1152
19. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press (1998)
20. Watkins, C.J., Dayan, P.: Q-learning. Machine Learning 8(3-4) (1992) 279–292
21. Whiten, A., ed.: Natural Theories of Mind. Basil Blackwell, Oxford, UK (1991)


