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Predicting Speaker Head Nods and the Effects
of Affective Information

Jina Lee and Stacy C. Marsella

Abstract—During face-to-face conversation, our body is con-
tinually in motion, displaying various head, gesture, and posture
movements. Based on findings describing the communicative
functions served by these nonverbal behaviors, many virtual agent
systems have modeled them to make the virtual agent look more
effective and believable. One channel of nonverbal behaviors
that has received less attention is head movements, despite the
important functions served by them. The goal for this work is to
build a domain-independent model of speaker’s head movements
that could be used to generate head movements for virtual agents.
In this paper, we present a machine learning approach for learning
models of head movements by focusing on when speaker head
nods should occur, and conduct evaluation studies that compare
the nods generated by this work to our previous approach of
using handcrafted rules [1]. To learn patterns of speaker head
nods, we use a gesture corpus and rely on the linguistic and af-
fective features of the utterance. We describe the feature selection
process and training process for learning hidden Markov models
and compare the results of the learned models under varying
conditions. The results show that we can predict speaker head
nods with high precision (.84) and recall (.89) rates, even without
a deep representation of the surface text and that using affective
information can help improve the prediction of the head nods
(precision: .89, recall: .90). The evaluation study shows that the
nods generated by the machine learning approach are perceived
to be more natural in terms of nod timing than the nods generated
by the rule-based approach.

Index Terms—Embodied conversational agents, emotion, head
nods, machine learning, nonverbal behaviors, virtual agents.

I. INTRODUCTION

D URING face-to-face conversation, our body is contin-
ually in motion, displaying various facial expressions,

head movements, gestures, body postures, and eye gazes. Along
with verbal communication, these nonverbal behaviors serve a
variety of important functions; they repeat, contradict, substi-
tute, complement, accent, or regulate spoken communication
[2]. In addition to these prominent behaviors, the way we use
our space (proxemics) or the manners of our haptics are also
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widely considered as nonverbal communications. Nonverbal
behaviors may also be affected by a range of affective phe-
nomena. For example, an angry person might display lowered
eyebrows and tensed lips with more expressive body gestures.
The behaviors we display not only convey our communicative
intent or emotion but also influence the beliefs, emotions, and
behaviors of the observers in turn; it is suggested that approxi-
mately 60%–65% of the social meanings are derived from our
nonverbal cues [3]. The use of appropriate nonverbal behaviors
make the interaction more natural and can help create rapport
among conversation participants [4].

One of the channels of nonverbal behaviors that has received
less attention is head movements. Nevertheless, research has
identified a number of important functions served by head
movements [5]–[7]. We may nod to show our agreement with
what the other is saying, shake to express disapproval and
negation, or tilt the head upwards along with gaze aversion
when pondering something. As with other nonverbal behav-
iors, head movements are also influenced by our emotions.
Mignault and Chaudhuri [8] found that a bowed head connotes
submission, inferior emotions (i.e., shame, embarrassment,
etc.), and sadness, whereas a raised head connotes dominance,
superiority emotions (i.e., contempt and pride), and happiness.

Consistent with the important role that head movements play
in human-human interaction, virtual agent systems have incor-
porated head movements to realize a variety of functions [1],
[9]–[13], [14]. The incorporation of appropriate head move-
ments in a virtual agent has been shown to have positive ef-
fects during human-agent interaction. Virtual agents with nat-
ural head motions improve the perception of speech [15] and
appropriate head motion not only improves the naturalness of
the animation but also enhances the emotional perception of fa-
cial animation [16].

Often virtual humans use handcrafted models to generate
head movements. For instance, in our previous work, we de-
veloped the Nonverbal Behavior Generator (NVBG) [1], which
is a rule-based system that analyzes the information from the
agent’s cognitive processing, such as its internal goals and
emotional state as well as the syntactic and semantic structure
of the surface text to generate a range of nonverbal behaviors.
To craft the rules that specify which nonverbal behaviors
should be generated in a given context, the knowledge from
the psychological literature and analysis of human nonverbal
behavior corpora are used to identify the salient factors most
likely to be associated with certain nonverbal behaviors.

As with a number of systems [9]–[11], [13] that generate
nonverbal behaviors for virtual humans, the NVBG work starts
with specific factors that would cause various behaviors to
be displayed. Although the knowledge encoded in the NVBG
rules has been reused and demonstrated to be effective across
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a range of applications [17]–[20], there are limitations with
this approach. One major drawback is that the rules have to be
handcrafted. This means that the author of the rules is required
to have a broad knowledge of the phenomena he/she wishes to
model. However, this is a very challenging task in nonverbal
behavior research for several reasons. First, we may not know
all the factors that cause people to make certain behaviors. For
example, we make head nods to deliver certain communicative
functions such as agreement, but we also make head nods that
are rhythmic with no clear communicative functions. Secondly,
even if we know all the individual factors that can cause the
display of nonverbal behaviors, as more and more factors are
added, it becomes harder to specify how all those factors con-
tribute to the myriad of behaviors generated. Without complete
knowledge of the correlations of the various factors, manual
rule construction may suffer from sparse coverage of the rich
phenomena.

To complement the limitations of our previous handcrafted
literature-based approach (from here we will call this the rule-
based approach), we present a data-driven, automated approach
to derive a model of speaker nonverbal behaviors, which we
demonstrate and evaluate. Specifically, the approach uses a ma-
chine learning technique—i.e., learning a hidden Markov model
(HMM) [21]—to create a head nod model from annotated cor-
pora of face-to-face human interaction. Because our goal is a
flexible system that can be used in different virtual agent sys-
tems with various approaches to natural language generation,
we restrict the features used in the machine learning to those
available across different systems. In particular, we explore the
use of features available through shallow parsing and interpreta-
tion of the surface text. In addition, we also investigate whether
the incorporation of affective information can improve the pre-
diction of the head nod model derived from the surface text. We
leave the exploration of deeper features for future work.

There are several advantages with the machine learning ap-
proach. First of all, the process is automated. With this approach,
it is no longer necessary for the author of the model to have a
complete knowledge of the complex mapping between the var-
ious factors and behaviors. What becomes more important is the
process of choosing the right features to train the model. Here,
of course, a good understanding of the phenomena is still impor-
tant as is automated feature selection [22]. Another advantage
of this approach is that the learning is flexible and can be cus-
tomized to learn for a specific context. For example, if we want
to learn the head nod patterns for different cultures, we may train
each model with each culture’s data. Similarly, if we wish to
learn gesture patterns with individualized styles, we can train
each model with data from specific individuals, as was done in
[23]. The advantages of the machine-learning approach makes
it a strong alternative to rule-based approach or a substantial en-
hancement when both are used.

In this paper, we review our prior work on building a do-
main-independent model of speaker’s head movements that can
be used to generate head movements for virtual agents [24],
[25]. We describe our machine learning approach for learning to
predict the speaker’s head nods from gesture corpora and also
investigate the effect of using the affective sense of utterance
during the learning process. Once the patterns of when people
nod are learned, we can in turn use the model to generate head
nods for virtual agents. Although the focus in this paper is on

Fig. 1. Overview of the head nod prediction framework. The information in
the gesture corpus is encoded and aligned to construct the data set. The feature
selection process chooses a subset of the features that are most correlated with
head nods. Using these features, probabilistic sequential models are trained and
utilized to predict whether or not a head nod should occur.

the initial steps of learning and evaluating the model, the model
could in turn be incorporated into a larger system like NVBG.
In addition to this, we also describe the evaluation study con-
ducted with human subjects that compares the head nods pre-
dicted by the machine learning model to the nods generated by
the rule-based model (NVBG).

The following section describes the research on head move-
ments, previous work on modeling head movements for virtual
agents, and the approaches each system employs. We then de-
scribe our machine learning approach for learning the speaker
head nod models in detail. The learning happens in two phases;
first we train the model without the affective information, then
we retrain the model with affective information. We explain
the data construction process, feature selection process, training
process, as well as the evaluation of the learned model with test
data. Then we explain the incorporation of affective informa-
tion detected from the utterances and compare the results of the
retrained model with the results of the previous model. Fig. 1
shows the overview of the procedures to learn the model (in-
cluding the incorporation of affective information). The results
show that the model is able to predict head nods with high pre-
cision and recall rates, but when we incorporate the affective
information, the learning can improve even more. Next we de-
scribe the evaluation study of the nods generated by the ma-
chine learning approach and the rule-based approach. The re-
sults show that the nods generated by the machine learning ap-
proach are perceived to be more natural in terms of the timing
of nod occurrences. Finally, we discuss the results and propose
future directions.

II. RELATED WORK

Nonverbal behaviors include everything from facial ex-
pressions, gestures, postures, to gaze movements. Researches
have identified and categorized a number of functions served
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by nonverbal behaviors. Bente and Krämer [26] summarize
them into three functional levels: discourse functions that are
conveyed through pointing or illustrative gestures, dialogue
functions that regulate the flow of interaction between speaker
and listener, and socioemotional functions that affect person
perception, evaluation, and interaction climate.

Heylen [7] summarizes the functions of head movements
during conversations in particular. This includes signalling
yes or no, enhancing communicative attention, anticipating an
attempt to capture the floor, signalling the intention to continue,
marking the contrast with the immediately preceding utterances,
and marking uncertain statements and lexical repairs. Kendon
[6] describes the different contexts in which the head shake may
be used. Head shake is used with or without verbal utterances
as a component of negative expression, when a speaker makes a
superlative or intensified expression as in “very very old,” when
a speaker self-corrects himself, or to express doubt about what
he is saying. In [5], McClave describes the linguistic functions
of head movements observed from the analysis of videotaped
conversations; lateral sweep or head shakes co-occur with
concepts of inclusivity such as “everyone” and “everything”
and intensification with lexical choices such as “very,” “a lot,”
“great,” and “really.” Side-to-side shakes also correlate with
expressions of uncertainty and lexical repairs. During narration,
head nods function as signs of affirmation and backchannel
requests to the listeners. Speakers also predictably change the
head position when discussing alternatives or items in a list.

Following the studies on nonverbal behaviors, many virtual
agents model these behaviors. Some generate the behaviors ac-
cording to the “conversation phenomena” or discourse structure.
REA’s [10] verbal/nonverbal behaviors are designed in terms of
conversational functions. REA employs head nods to provide
feedback and head toss for signalling openness to engage in
conversations. BEAT [11] generates eyebrow flashes and beat
gestures when the agent describes a new object that is part of
the rheme in the discourse structure of the utterance. Breitfuss
et al. [9] developed a system for automatic nonverbal genera-
tion in which head nod is used as a basic gesture type when
listening or is used when no other specific gesture can be sug-
gested. The Nonverbal Behavior Generator [1] generates behav-
iors given the information about the agent’s cognitive processes
but also can infer communicative functions from a surface text
analysis. Head nods are associated with affirmation, intensifica-
tion, assumption, and interjections.

Other virtual agents focus on generating expressive behav-
iors according to the agent’s emotional state. Deira [13] is a
reporter agent that generates basic head movements (including
facial expressions) at fixed intervals but also produces more pro-
nounced movements as the agent’s excitement rises during the
report. Similarly, ERIC [14] is a commentary agent that shows
“idle” gestures when no other gestures are requested, but gen-
erates various nonverbal behaviors according to its emotional
state. Lance and Marsella [27] develop a model of emotionally
expressive gaze behaviors based on motion captured data. The
model generates gaze behaviors by controlling not only the eye
movements but also the head and torso movements according to
the emotional state.

Recently, there have been growing efforts to use corpora of
nonverbal behavior more extensively. Foster and Oberlander
[12] present a corpus-based generation of head and eyebrow

motion for virtual agents. To generate behaviors, they either
choose the behavior that was most frequently observed or make
a weighted choice among all the different behaviors observed
for the given context (i.e., feature combination). However, the
features they use are based on a specific domain and language
tools, which could limit the portability of the model to other sys-
tems or domains. For example, the utterances in the corpus are
about bathroom tile design and one of the features they use is
the user preference of objects being presented (e.g., preference
of tile shapes or designers).

Morency et al. [22] focus on modeling the listener’s head
movements. They create a model that predicts listener’s
backchannel head nods using the human speaker’s multi-modal
features (e.g., prosody, spoken words, and eye gaze). Similarly,
other works also use prosodic features to predict listener’s
backchannel head nod [28]–[30] and [31]. Busso et al. [16] use
features of actual speech to synthesize emotional head motion
patterns for avatars. Their audiovisual database includes record-
ings of an actress’ voice who expresses different emotions and
motion caption data that track her head and facial movements.
They use prosodic features of the recorded voice and build
hidden Markov models to synthesize head motions for each
emotional categories and use visual features to generate expres-
sive facial animations. Although the above works build models
to generate either the listener’s or speaker’s head movements,
they commonly utilize the speaker’s natural speech data, which
are shown to have high correlations with head movements [32].
However, in this work where we are focusing on generating
head movements for interactive virtual agents, we often do not
have the natural speech recordings of the agent’s dialog. Many
interactive virtual agent systems generate the agent’s dialog
in real-time according to the human-agent interaction and use
automatic text-to-speech (TTS) systems to generate speech, but
the generated speech may often sound robotic and unnatural;
relying on this information to build a prosody-based model of
head movements would introduce many errors.

In the works described above, head nods for virtual agents are
either generated based on the findings of the research literature
or by learning the patterns from gesture corpora. In the first case,
head nods occur to realize communicative functions identified in
the literature, but these functions may also be realized through
different behaviors other than nods. In addition, it is not nec-
essarily true that the research literature identify all contexts in
which head nods occur. In particular, this approach runs a risk of
generating less nods than humans and leading the agent to look
rigid or unnatural and therefore require addition of ad hoc ap-
proaches to embellish the agent’s behaviors (see [1] for discus-
sion). Further there are both individual and cultural differences
[33], [34] that have only been partially explored in the existing
literature. Without modeling these differences, all the virtual
agents will nod identically and again make them look unnatural,
especially if two or more agents are involved in a multi-party
conversation. On the other hand, the machine learning approach
can identify more contexts in which nods occur and can capture
individual and cultural differences, assuming appropriate data
collection and feature selection process. To that end, we hypoth-
esize that the machine learning approach will lead to more nat-
ural looking behaviors.

As mentioned above, we want to model the speaker’s head
movements and use the learned model to generate head nods in
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real time for virtual agents. For this reason, we focus on features
that are available at the time head movements are generated for
virtual agents. We also plan to make the model portable to other
systems by using features that are easily obtainable across dif-
ferent language tools, instead of relying on information from
specific tools [12] or natural speech input [22], [16]. In addi-
tion to constructing a framework for predicting head nods, we
also investigate whether knowing the affective sense embedded
in the utterance can help us. In the following sections, we show
that even with shallow model of the surface text, we can learn
the model of speaker’s head nods with high accuracy and that
using the affective sense helps us improve the learning.

III. PREDICTING SPEAKER HEAD NODS

In this section, we describe our machine learning approach
for learning the speaker head nods (without affective informa-
tion). First we describe the gesture corpus used to construct the
training data and the feature selection process. We then give a
detailed description on how we trained the model and explain
the results of the trained model.

A. Gesture Corpus

The AMI Meeting Project is a European-funded multi-dis-
ciplinary consortium formed to promote the research of
group interaction [35]. The AMI Meeting Corpus is a set of
multi-modal meeting records that includes 100 meeting hours.
Each meeting consists of three or four participants placed in
a meeting-room setting with microphones, a slide projector,
electronic whiteboards, and individualized and room-view
cameras. Fig. 2 shows the meeting setting from which the
corpus was created. There are two types of meetings in the
corpus: scenario meetings and non-scenario meetings. In the
scenario meetings, participants play the roles of employees
in an electronics company and discuss the development of a
new television remote control. Each participant plays a specific
role (e.g., project manager, marketing expert, user interface
designer, etc.) and is provided information from the scenario
controller about when to start and finish the meetings, what
to prepare for the meetings, etc. There are no scripts given to
the participants. In the non-scenario meetings, participants are
colleagues from the same area and have discussions on their
research topics (e.g., speech research colleagues discussing
posterior probability methods). Again, no script is given to the
participants.

The corpus includes annotations of the meeting context such
as participant IDs and topic segmentations, as well as annota-
tions on each participant’s transcript and movements. Annota-
tions of each meeting are structured in an XML format and are
cross-referenced through meeting IDs, participant IDs, and time
reference. The following lists some of the annotations with brief
descriptions (not a complete list).

— Dialogue Acts: Speaker intentions such as information ex-
change, social acts, and non-intentional acts.

— Topic Segmentation: A shallow hierarchical decomposi-
tion into subtopics (e.g., opening of meeting, chitchat).

— Named Entities: Codes for entities (people, locations, arti-
facts, etc.) and time durations (dates, times, durations).

— Head Gestures: Head movements of each participant.
— Hand Gestures: Hand movements of each participant.

Fig. 2. Snapshot of the meeting setting used for AMI meeting corpus [35].

TABLE I
LIST OF MEETING ANNOTATIONS [35] USED FOR LEARNING.

RECORDINGS OF 17 MEETINGS WERE USED, WHICH ADDS UP TO BE
APPROXIMATELY EIGHT HOURS OF ANNOTATION

— Movement: Abstract description of participant’s move-
ments (e.g., sit, take_notes, other).

— Focus of Attention: Participant’s head orientation and eye
gaze.

— Words: Transcript of words spoken by each participant.
For this work, we used the recordings of 17 meetings, each

consisting of three to four participants, which adds up to be ap-
proximately eight hours of meeting annotation. The meetings
used for learning are listed in Table I.

B. Data Alignment and Feature Selection

The main goals for this work are robustness and portability, as
well as the ability to generate behaviors using information that
is generally available across different systems. One common
source of information is the agent’s surface text that is generated
by the natural language generator. Therefore, for this work, we
perform a shallow parsing to analyze the syntactic and semantic
structure of the surface string to derive features for the machine
learning.

To construct the training data, we used the transcript of each
speaker, the dialog acts of each utterance, and the type of head
movements observed while the utterance was spoken. There are
a total of 15 different types of dialogue acts and five different
types of head movements. The different dialogue acts are as
follows.
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Fig. 3. Snapshots of head movements in AMI corpus [35]. From the top: nod,
shake, nodshake, and other head movements.

• Assess
• Backchannel
• Be-Positive
• Be-Negative
• Comment-About-Understanding
• Elicit-Assessment
• Elicit-Comment-Understanding
• Elicit-Inform
• Elicit-Offer-Or-Suggestion
• Fragment
• Inform
• Offer
• Stall
• Suggest
• Other

The different head movement types are: nod, shake, nodshake,
other, and none. Snapshots of the head movements are shown
in Fig. 3. We also obtained the part of speech tags and phrase
boundaries (e.g., start/end of verb phrases and noun phrases) by
processing the utterances through a natural language parser [36].
In addition, we also combined the features from the Nonverbal
Behavior Generator [1]; the nonverbal behavior rules within

Fig. 4. Data construction process. From the gesture corpus, speaker transcript,
dialog act, and head types are extracted. The transcript is sent to the natural
language parser to extract the part of speech tags and phrase boundaries. A script
automatically cross-references each file to construct the data set. This data set
is encoded and transformed into trigrams before being used to train the HMMs.

TABLE II
KEY LEXICAL ENTITIES. THESE LEXICAL ENTITIES ARE SHOWN

TO HAVE HIGH CORRELATIONS WITH HEAD NODS

NVBG identify communicative functions and key lexical enti-
ties associated with head nods from the psychological research.
These communicative functions include Affirmation, Assump-
tion, and Intensification. Table II lists the key lexical entities
with the communicative functions served by them and Fig. 4 il-
lustrates the overall data construction process for the prediction
model.

From the 17 meeting recordings we used, we collected 10 000
sentences and cross-referenced the corresponding annotation
files and aligned the features at the word level. In other words,
we aligned each word with the following:

• Part of speech tag (e.g., noun, verb, etc.: 29 cases)
• Dialog act (each word in the same utterance will have the

same dialog act label)
• Phrase boundaries (sentence start/end, noun phrase start,

verb phrase start)
• Key lexical entities (keywords known to be highly associ-

ated with nods from psychological research)
For the particular kind of model we are training (i.e., hidden

Markov models), adding another feature means we need more
data samples to learn the combinations of all the features and
how they affect the outcome we are trying to classify. With a
limited number of data samples, we want to keep the number of
features low by eliminating uncorrelated features (i.e., features
that do not affect head nods). Therefore, a subset of the avail-
able features was selected by the frequency of head nods that oc-
curred with each feature. Table III lists the frequency counts of
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TABLE III
FEATURES THAT MOST FREQUENTLY CO-OCCURRED WITH HEAD NODS FROM

THE GESTURE CORPUS (OUT OF 2590 WORDS THAT CO-OCCURRED WITH
NODS). THE FREQUENCY COUNTS ARE INDEPENDENT FROM EACH OTHER

TABLE IV
FINAL FEATURES SELECTED FOR TRAINING. THE FEATURES WERE SELECTED
BASED ON THE RESULTS OF TABLE III. THE LABEL “REMAINDER” INCLUDES

EVERYTHING NOT FALLING UNDER OTHER CATEGORIES. THE EMOTION LABEL
WAS USED FOR THE SECOND PHASE OF LEARNING DESCRIBED IN SECTION IV

these features (out of 2590 words with nods). It shows that head
nods occurred more frequently at the beginnings of utterances
and noun/verb phrases than at the end. From part of speech tags,
Interjection was most correlated with head nods, followed by
Proper Nouns, Conjunctions, and Adverbs. Dialog Act Inform
most frequently co-occurred with nods along with BackChannel
and Suggest. There was also a substantial number of nods occur-
ring with the Key Lexical Entities. Based on the results described
above, the final features were selected for training. Table IV lists
the final features used for training the models.

C. Training Process

To learn the head nod model, HMMs [21] were trained.
HMMs are statistical models that are widely used for learning
patterns where a sequence of observations is given. Some of
the applications where HMMs have been successfully used
are gesture recognition, speech recognition, and part-of-speech
tagging [37]–[39]. For this work, the input is a sequence of
feature combinations representing each word. The sequential
property of this problem led us to use HMMs to predict head
nods.

After aligning each word of the utterances with the selected
features, we put together sequences of three words to form a

TABLE V
MEASUREMENTS FOR THE PERFORMANCE OF THE LEARNED MODELS

TABLE VI
CHANGES IN PRECISION, RECALL, F-SCORE RATES OF SELECTIVE

FEATURES WHEN EACH WAS TAKEN OUT FROM LEARNING.
THE CHANGES ARE COMPUTED FROM THE RESULTS IN TABLE V

set of trigrams. We constructed trigrams because unigrams or
bigrams are not long enough to learn the dynamics or the “con-
text” of the observation sequence, and observation sequences
longer than four words would result in sparse data since a large
number of head nods in the gesture corpus span over fewer than
four words. The constructed trigrams that formed our data set
are overlapping, so that each word is part of three exactly tri-
grams. For each trigram, the head type was determined by the
majority vote method. For example, if more than two out of three
words co-occurred with a nod, the trigram was labeled as a nod
instance, and the same applied for other head movement types.

To determine whether a trigram should be classified as a nod,
we trained two HMMs: a “NOD HMM” and a “NOT_NOD
HMM,” which includes trigrams with head movements types
other than a nod or no head movement. Since the output of an
HMM is a probability that a sample is labeled with a partic-
ular classification, we feed the same trigram into both models
and compare the probabilities to determine its classification. To
train a “NOD HMM,” we collected all the positive instances of
“nod” trigrams from the entire set of trigrams. There were a total
of 1318 instances of “nod” trigrams.

After collecting all the “nod” trigrams, we left out 20% of
the “nod” trigrams as a test set, which is used in the final evalu-
ation step, and used the remaining 80% of the data for training.
To determine the parameter settings of HMM (i.e., the number
of hidden states) that produce the best result, we performed a
ten-fold cross-validation for each parameter setting. That is, we
split the remaining 80% of the data into ten parts and used one
part as a validation set and nine parts as a training set. After
training the model, we obtained the performance measurements
of the model. We repeated this process ten times and obtained
an average performance measurement for each given number of
hidden states. We then determined the best number of hidden
states by comparing the average performance measurements.
After this, we combined all ten parts and trained the final “NOD
HMM” with the chosen number of hidden states. In our case, the
model with six hidden states performed the best. Similarly, we
collected the positive instances of “NOT_NOD” trigrams (i.e.,
trigrams with head movements other than nod or no head move-
ments, total 72 344 trigrams) and repeated the above steps to
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TABLE VII
MEASUREMENTS FOR THE PERFORMANCE OF THE LEARNED MODEL. FOR THE ONE-SIDED T-TESTS, * MARKS AND ** MARKS

train a final “NOT_NOD HMM.” Finally, we ran the test set
(20% of the entire data left out which were not used in training)
through the “NOD HMM” and “NOT_NOD HMM” and clas-
sified each sample to have the head movement of whichever
model produced a higher probability. The testing was also done
in ten-folds to reduce variability.

D. Results and Discussion

To measure the performance of our learned model, we com-
puted the accuracy, precision, recall, and F-score of the learned
model. Accuracy is the ratio of samples that were correctly clas-
sified. Precision is the ratio of the number of nods predicted by
the learned model which are actually nods to the total number of
nods predicted by the data. Recall is the ratio of the number of
nods predicted by the learned model which are actually nods to
the number of nods in the actual data. For the F-score, we gave
the recall and precision the same weight (F ). Table V summa-
rizes the results. We achieved .8577 for accuracy, .8366 for pre-
cision, .8890 for recall, and .8620 for F-score rates.

The results show that the model can predict head nods with
high precision, recall, and accuracy rate with only a shallow
model of the surface text (i.e., only using the syntactic/semantic
structure of the utterance and the dialog act). An insight into
where the model failed could be explained by looking at false
positive and false negative samples. A majority of false posi-
tives (predicted nods that are not actually nods) occurred on tri-
grams that represented the end of sentences. On the other hand,
false negatives (actual nods that were missed by the model) oc-
curred largely when the trigram included words that are the be-
ginning of verb phrases whose parts of speech were marked as
“Remainder.”

In addition to the main results presented in Table V, a second
experiment was conducted to assess which features were more
important in the model. We took out one feature at a time and
trained the HMMs with the rest of the features. For each case,
we computed the accuracy, precision, recall, and F-score and
compared them to the previous values by computing the differ-
ences in each measurements.

For many features, removing them had small trade-offs in pre-
cision and recall rates. However, some feature extractions had
more notable impact. We show these in Table VI. Specifically,
Adverb affected the learning very marginally when taken out,
whereas removing Verb Phrase Start, Noun Phrase Start, Sug-
gest, and Interjection resulted in a larger change in both preci-
sion and F-score values. Interestingly, in the case of Verb Phrase
Start and Noun Phrase Start, our previous rule-based approach
(NVBG) inserted head nods in those places to make the agent
look more lifelike, because the NVBG was under-generating be-
haviors. The results of the second experiment raise a need for a

more sophisticated automatic feature selection process such as
the method used by Morency et al. [22], which can investigate
the correlations of the features and head nods more thoroughly
than a simple frequency count. Additionally, further evaluation
with human subjects is needed. For example, it may be that the
behavior looks more natural if we include those Noun Phrase
Start and Verb Phrase Start features, even though the F-score
drops.

IV. USING AFFECTIVE INFORMATION

The previous section described the framework for the speaker
head nod prediction model using the information obtained from
shallow parsing of the surface text. In this section, we incorpo-
rate the affective information and investigate whether it can im-
prove the learning. We use the Affect Analysis Model (AMM)
[40] to detect the affective sense of each word as well as each
sentence and retrain the model. The results of the model using
affective information over each word and over each sentence are
compared to the previous model using no affective information.

A. Affect Analysis Model

The AAM [40] is a rule-based system aimed for the recog-
nition of ten emotions from text. Given a sentence, AAM
performs a series of analysis and produces an emotion vector
that represents the intensities of ten emotion categories: Anger,
Disgust, Fear, Guilt, Interest, Joy, Sadness, Shame, Surprise,
and Neutral. The initial stages of the analysis test for occur-
rences of emoticons, abbreviations, acronyms, or punctuation
marks and parses the sentence through a syntactical parser
to obtain more exhaustive information of the given sentence.
AAM then goes through a word-level analysis in which the
words in the sentences are looked up against a database that
contains a set of emotional words with their intensity values.
If the sentence includes modifiers (e.g., “very,” “extremely,”
“hardly,” etc.), the emotional intensities of the modified words
are adjusted accordingly. After the word-level analysis, AAM
analyzes the types of phrases contained in the sentence (e.g.,
adjective/noun/verb plus noun phrase) and the syntactical
structure of the sentence (e.g., simple/complex/compound
sentences) to further modify the intensities of each emotion cat-
egory. The evaluation of AAM shows that the system’s output
of the dominant emotion label of sentences agreed 79.4% of
the time with at least one out of three human annotators and
70% of the time with at least two annotators [40].

B. Retraining of the Model and Results

For our second phase of learning, we obtained the emotion
vectors of each word in the sentence as well as that of the whole
sentence from the Affect Analysis Model. The most dominant
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emotion category in the emotion vector was used as the emotion
label of each word or sentence. To learn the head nod models, we
retrained the model first using emotion label of each word then
the emotion label of each sentence as additional features. The
training process is identical to that described in Section III-C.
The number of states for the final trained model with no emo-
tion, emotion over word, and emotion over sentence were 6, 2,
and 3, respectively.

Table VII summarizes the results, including one-tailed t-tests
among the three conditions. When emotion label for each word
was used, there were marginal changes in the precision, recall,
and F-score rates compared to when no affective information
was used, and these changes were not statistically significant.
Therefore, using the affective information over words as an ad-
ditional feature had very little impact on learning. On the other
hand, when the affective information for the whole sentence was
used, the accuracy, precision, recall, and F-score rates all in-
creased compared to the other two models, with the precision
rate showing the greatest increase by .0573 (when compared to
the model with no affective information). The t-tests show that
all of these increases were statistically significant.

A closer look at the training output tells us that when the
affective information over sentences was used, there were 46%
fewer false positives (i.e., number of predicted nods that are not
actually nods) compared to when no affective information was
used, resulting in a large increase in the precision rate. More
specifically, the model predicted fewer false nods at the end of
the sentences. Arguably, this increase in the precision rate by
lowering the number of false positives is especially important
because predicting nods at times when they should not occur
could lead to false implicature. For example, the model could be
generating a nod that emphasizes a wrong point in the utterance.

There are also several possible explanations for why using the
affective information over sentences outperforms using the af-
fective information over words. First, it may be that the Affect
Analysis Model performs better on sentences than on words. To
produce an emotion label over a word, AAM simply looks up
the word in the database, whereas for sentences, it goes through
a more sophisticated analysis. Secondly, nods may need a wider
context. Specifically, they can have an association with higher
level semantic or pragmatic factors, which can span over phrases
or sentences than a single word. This emphasizes a deeper anal-
ysis to improve the learning.

V. EVALUATION STUDY

In this section, we describe an evaluation study with human
subjects to compare the perception of head nods driven by
our rule-based approach, machine learning approach, and
real human behavior. To do this, an online evaluation study
was conducted. Here we especially stress the importance of
conducting evaluation studies with human subjects because
despite the fact that our machine learning model predicts head
nods with high precision, recall, and f-score values, it does not
directly guarantee that the predicted nods will also look natural
to human eyes.

A. Hypothesis

Our main interest for the evaluation study was to investigate
the perception of head nods generated by the two approaches
as well as the nods made by real humans but displayed through

a virtual agent. To answer this, we compared the following
schemes for generating head nods:

• head nods made by humans and displayed through a virtual
agent;

• head nods generated by the machine learning approach and
displayed through a virtual agent;

• head nods generated by the rule-based approach and dis-
played through a virtual agent.

In this study, we hypothesized that

The occurrence of nods generated by the machine
learning approach will be perceived to be more natural
than the nods generated by the rule-based approach.

We based the hypothesis from the fact that because machine
learning approach uses corpus on real human data to model
nods, this approach may capture the “naturalness” better than
rule-based approach. On the other hand, the handcrafted rule-
based approach largely ignores the context of the interaction
when generating behaviors, so it may over-generate or under-
generate behaviors. In addition to the main hypothesis, we also
expected that the human-made nods would look more natural
than nods from either the machine learning approach or rule-
based approach.

B. Generating Nods From the Machine Learning Model

To generate head nods for a given sentence using the ma-
chine learning model, we used the trained model that incorpo-
rates affective information over the whole sentence. Since the
machine learning model predicts head nod occurrences on a tri-
gram-level, we need a way to determine where the nod occurs
in the trigram. To do this, for each word in the sentence, we
looked at all the trigrams that particular word is part of (there
are three in total). Similar to the majority voting method we used
for determining the head movement label for the trigrams in the
training process, if two out of three trigrams the particular word
is involved were classified as nods, that word was predicted to
accompany a nod.

C. Evaluation Study Methods

1) Participants: Twenty-nine participants were recruited via
e-mail and web postings. There were 25 males and four females
with ages ranging from 19 to 41 ( years,
years).

2) Stimuli: We created video clips of a virtual agent dis-
playing head nods while speaking an utterance. Fig. 5 shows
a snapshot of the video clip. We randomly selected seven ut-
terances spoken by several individuals from the gesture corpus
used in the machine learning approach. None of the utterances
were used during the training process for learning the speaker
head nod models. We then passed these utterances through both
the rule-based model (NVBG) and machine learning model to
obtain head nod predictions.

With the nod predictions from both the rule-based approach
and the machine learning approach, we created three versions
of video clips for each utterance: head nods displayed by the
human in the gesture corpus, head nods generated by the ma-
chine learning approach, and head nods generated by the rule-
based approach. Therefore, there were a total of 21 video clips
(7 utterances 3 conditions). In all three conditions, the magni-
tude, velocity, and length of the nods were unified; the models



560 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 12, NO. 6, OCTOBER 2010

Fig. 5. Snapshot of the video clip shown in the evaluation study.

only predicted the timing of the nods and not the dynamics.
Therefore, the only differences among the different conditions
were the frequency of the nods and the timing of when nods oc-
curred. No other nonverbal behaviors were generated except for
the lip syncing motion and eye blinking. The average numbers
of nods in an utterance for human nods, machine learning ap-
proach, and rule-based approach were 3.14, 5.29, and 4.5.

3) Design and Procedure: All evaluation studies were com-
pleted online. Participants first filled out a demographic ques-
tionnaire asking their age, gender, education level, ethnicity, and
occupation. Following this, participants went through seven sets
(one for each utterance) of video evaluations, each consisting of
three video clips for each condition. The order of the evaluation
sets and the video clips representing each condition were all ran-
domized. The video clips lasted about 10 s. After watching each
video, users were asked to answer questions on various aspects
of the head nod timings. The specific questions asked were

1) Do the agent’s nods occur at appropriate times?
2) Were there times when the agent should have nodded but

did not?
3) How natural is the timing of nod occurrences overall?

Participants answered the questions using a scale from 1 to 7
(1 meaning “Never” or “Not natural at all” and 7 meaning “Al-
ways” or “Very Natural”).

D. Results

The analysis of the answers are based on repeated measures
ANOVA with modeling approach as within-subject variable.
Bonferroni adjustments were used for post-hoc pairwise com-
parisons. For the second question, we inverted the values so that
the higher values indicate better results. Fig. 6 shows the mean
values for the three questions. In all three questions, the results
show statistical significance.

Fig. 6. Mean values for the evaluation study. Vertical bars denote the 95% con-
fidence intervals and asterisks (**) mark statistical significance with .

For the perception of nods at appropriate times (Question
1), there was a significant effect of the generation approach

. In general, participants
perceived that nods generated by the machine learning approach

had more cases of nods at appro-
priate times, followed by nods generated by rule-based approach

and human nods
. The pairwise comparisons show that there is a signifi-

cant difference between human nods and machine learning ap-
proach, and between machine learning approach and rule-based
approach.

For the perception of missed head nod opportunities (Ques-
tion 2), there was also a significant effect of the generation ap-
proach . Participants per-
ceived that the rule-based approach
missed less nod opportunities followed by machine learning ap-
proach and human nods

. The pairwise comparisons show that there
is a significant difference between human nods and machine
learning approach, and between human nods and rule-based ap-
proach.

Finally, there was also a significant effect of the generation
approach on the overall naturalness of the nod timing (Question
3) . Participants rated
the nods generated by machine learning

approach the highest followed by nods generated by rule-
based approach and human-made
nods . Similar to the results of Ques-
tion 1, there is a significant difference between human nods and
machine learning approach, and between machine learning ap-
proach and rule-based approach.

E. Discussion

The results of the evaluation study show that there was a
significant effect of the generation approach on the ratings for
nods at appropriate times, missed nod opportunities, and nat-
uralness of the nod timing. Furthermore, there were significant
differences between the machine learning approach and the rule-
based approach on the perception of nods at appropriate times
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and the overall naturalness of nod timings. Therefore, we can
conclude that our hypothesis was partly validated.

Additionally, the machine learning approach produced better
results than human nods in all three questions with statistical
differences, which is in opposition to our expectation. A pos-
sible explanation for this result could come from the fact that
the machine learning model is a general model trained on the
data from many different people. Therefore, the model predicts
where people will most likely nod on average. On the other
hand, each video showing human nods was based solely on nod-
ding behaviors of the differing individuals who originally spoke
the different utterances. Thus, the participants are comparing a
particular person’s nods on a particular utterance to those from
a general model learned from many people’s nods on many dif-
ferent utterances. Since each individual style of nodding behav-
iors (and other nonverbal behaviors) differ, the results may be
indicating that an average behavior is perceived as more appro-
priate than nods with an individual style, even though they are a
reflection of a real human’s nods. This result sheds light on an
important fact; there is a wide variability in human nonverbal be-
havior. Some people nod quite often, for example, while others
rarely do. Whereas an individual’s behavior is a baseline in the
sense that we seek to achieve at least that level of performance
in our models, an individual’s behavior may not necessarily be
the “gold standard” of what will be perceived as the most nat-
ural behavior.

VI. CONCLUSIONS AND FUTURE DIRECTION

In this paper, we presented an approach to learning a prob-
abilistic model to predict head nods using a gesture corpus. In
this approach, we focused on using the linguistic features of the
surface text, including the syntactic/semantic structure of the ut-
terance and other information that may be provided by the vir-
tual agent’s natural language generator. Using these features,
we trained hidden Markov models to predict head nods. The re-
sults show that the learned models predict head nods with high
values of precision, recall, and F-scores. We also explored the
effect of affective information to improve the learning. We de-
tected the affective sense over words and sentences and incorpo-
rated them during the learning process. Comparing the results of
three different models (no emotion, emotion over word, emotion
over sentence), it is shown that we can improve the prediction
of speaker’s nods when using the affective information of the
whole sentence. Finally, we conducted an evaluation study with
human subjects on the perception of nods generated by our pre-
vious rule-based approach, machine learning approach, and real
human nods. The results show that timings of nods generated by
the machine learning approach were perceived to be more nat-
ural than the nods generated by the rule-based approach.

This work shows that human head nods could be predicted
with high performance measures using machine learning ap-
proach even without a rich markup of surface text. Compared to
the knowledge-intensive approach where the rule-author needs
to manually construct rules that generate head nods, this ap-
proach does not require a complete knowledge of the correla-
tions of the factors that may affect head nods. Instead, the author
may concentrate on selecting the right features used for machine
learning, which in our case was guided by the research on head
movements. Knowing the affective sense of the utterance is also

shown to be helpful in learning the models, but a simple lookup
to determine the emotion for the words can damage the learning,
which emphasizes the need for a deeper analysis to improve the
learning. The evaluation study shows that the machine learning
approach captures the “naturalness” of the nodding behaviors, in
terms of nod timing, better than the rule-based approach, which
often ignores the context of the interaction.

This work could be extended in several ways. First of all, as
mentioned earlier, we can use a more sophisticated feature se-
lection process and retrain the models. The current feature se-
lection process simply looks at the co-occurrence of each fea-
ture and head nods, but we can also investigate the correlations
among different features and their impacts on head nods. Sec-
ondly, we can use similar approach to learn patterns of different
head movements and other nonverbal behaviors, or to learn pat-
terns of behaviors across individuals and cultures. Thirdly, we
may extend the work to include deeper features in addition to
the linguistic features. For example, we may look at the con-
currence of other behaviors to see if there is a correspondence
with head nods or encode the social context, such as the domi-
nance relationship between the conversation participants, as ad-
ditional features. We also plan to extend the evaluation study
with human subjects. We are especially interested in evaluating
what the subjects infer from looking at the generated behaviors,
including whether the agent looks trustworthy and friendly, or
whether the agent’s emphasis points in the utterances coincide
with those perceived by the users.
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