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Abstract

Agents must form and update mental models about each other
in a wide range of domains: team coordination, plan recogni-
tion, social simulation, user modeling, games of incomplete
information, etc. Existing research typically treats the prob-
lem of forming beliefs about other agents as an isolated sub-
problem, where the modeling agent starts from an initial set
of possible models for another agent and then maintains a be-
lief about which of those models applies. This initial set of
models is typically a full specification of possible agent types.
Although such a rich space gives the modeling agent high ac-
curacy in its beliefs, it will also incur high cost in maintain-
ing those beliefs. In this paper, we demonstrate that by tak-
ing this modeling problem out of its isolation and placing it
back within the overall decision-making context, the model-
ing agent can drastically reduce this rich model space without
sacrificing any performance. Our approach comprises three
methods. The first method clusters models that lead to the
same behaviors in the modeling agent’s decision-making con-
text. The second method clusters models that may produce
different behaviors, but produce equally preferred outcomes
with respect to the utility of the modeling agent. The third
technique sacrifices a fixed amount of accuracy by cluster-
ing models that lead to performance losses that are below a
certain threshold. We illustrate our framework using a social
simulation domain and demonstrate its value by showing the
minimal mental model spaces that it generates.

Introduction
Agents face the challenge of forming and updating their
mental models of each other in a wide range of multiagent
domains. Research in plan recognition has produced an ar-
ray of techniques for modeling a planning agent and forming
a belief about what its goals and intentions are, so as to pre-
dict its future actions (Schmidt, Sridharan, & Goodson 1978;
Kautz & Allen 1986). User modeling faces a similar prob-
lem in trying to understand and anticipate the needs of
human users interacting with a software system (Jameson
1995). Agents working together as teams must maintain be-
liefs about their teammates’ status (Kaminka, Pynadath, &
Tambe 2002). Social simulation may require agents with a
theory of mind about the other agents in their society (Pyna-
dath & Marsella 2005). In games of incomplete information,
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each player faces uncertainty about the payoffs that the other
players will receive (Fudenberg & Tirole 1991).

In these areas, forming mental models is treated as a sep-
arate subproblem within the overarching decision-making
context of the agent. The modeling agent starts from an
initial set of possible models for the other agents, whether
in the form of plan libraries in plan recognition, possible
mental models in social simulation, private types in games
of incomplete information, etc. As the modeling agent in-
teracts with the other agents, it updates that belief based on
its observations of their behavior. The modeling agent then
uses its mental models of the other agents to make informed
decisions based on expectations of what they will do.

For example, in a social simulation of a classroom, a
teacher deciding how to maintain discipline would find it
useful to keep track of which students (dis)like each other. If
she is also planning a picnic lunch, then she might also want
to keep track of which students prefer pizza to hamburgers.
In general, enriching the mental models that the teacher has
of her students enables her to make better decisions. On the
other hand, it is harder for her to maintain correct beliefs
over the richer models. Intuitively, we expect a diminishing
return on enriching the mental models, where adding more
details offers less gain in accuracy, while increasing compu-
tational cost. For example, while the teacher could also keep
track of her students’ musical preferences, she would expect
little benefit from doing so.

Agent modeling approaches vary in their method for
choosing the appropriate refinement of the mental model
space. Typical approaches rely on a human designer to im-
plicitly define the level of detail (e.g., deciding which fea-
tures, goals, plans, etc. to represent). These approaches
focus on the representational needs regarding the modeled
agent, without any consideration of the decision-making
needs of the modeling agent. Thus, they run the risk of gen-
erating either an overly detailed space of mental models that
will unnecessarily burden the modeling agent, or an overly
coarse space that will lead to suboptimal performance.

In this paper, we demonstrate that we can choose a min-
imal, but sufficient, space of mental models by taking the
problem of modeling others out of its isolation and placing
it within the overall decision-making context of the model-
ing agent. The agent can then automatically derive a space
of mental models according to an informed analysis of the



cost-benefit tradeoffs. In most domains, agents can expect
that this analysis will allow them to drastically reduce the
original full mental model space, without overly sacrific-
ing performance. Furthermore, the generated mental model
space will be optimized for the individual modeling agent’s
needs, rather than having multiple modeling agents using the
same space of models for the same observed agent.

We present three methods that we have implemented to
quantify the value of including a candidate mental model:
Behavior Equivalence, where the modeling agent clusters
models that lead to the same behavior of the modeled agent;
Utility Equivalence, where the modeling agent clusters mod-
els that may lead to different behaviors, but produce equally
preferred outcomes in terms of utility; and Approximate
Utility Equivalence, where the modeling agent clusters mod-
els that lead to performance losses below a certain threshold,
sacrificing a fixed amount of accuracy.

Modeling Other Agents
Across the various multiagent research areas already men-
tioned (and even within each area itself) researchers have ap-
plied a wide variety of possible representations. We present
a methodology using an abstract agent modeling framework
that is general enough to cover these approaches, as well as
other decision-making procedures in the literature. When
applying our methodology to a specific domain, these com-
ponents would become specialized to the particular frame-
work used for the agents in that domain.

Agent Notation
At the most general level, an agent model is a triple,
〈B,A, U〉. B is the set of possible beliefs that the agent
can have about its environment (including the other agents),
A is the set of available actions, and U is a utility function
over outcomes. We use the same structure to represent both
the actual agents and the mental models they have of each
other. Thus, we represent the multiagent system itself as
a set of real agents, {mi}Ni=1. For each such agent model,
mi = 〈Bi, Ai, Ui〉, the beliefs, Bi, consist of a set of possi-
ble belief states including possible beliefs over mental mod-
els, Mij , that represent what agent i can think of agent j.

The modeling agent wishes to minimize this space, Mij .
In particular, we want an algorithm that computes the ex-
pected utility derived by the modeling agent i when using
the set of mental model spaces, {Mij}Nj=1, for all of the
agents in the system (potentially including itself). We de-
fine the behavior of an agent as a policy, π : B → A, out of
a set of possible policies, Π. Any agent architecture will in-
clude an algorithm for translating an agent into such a policy,
π. We will abstract this procedure into a generic function
SOLVE: M → Π, that takes an agent model (whether real or
subjective) and returns that model’s policy of behavior.

Example Domain
We have taken our example domain from a scenario in child-
hood aggression, modeled within PsychSim, a multiagent
social simulation tool (Pynadath & Marsella 2005). There
are agents for three students: a bully, his victim (i.e., the

student he focuses his aggression on), and an onlooking stu-
dent to whom the bully looks for affirmation. There is also a
teacher who wishes to prevent any incidents of aggression.
The teacher can deter the bully by doling out punishment.
We focus on the problem facing the bully agent, whose de-
cision on whether to pick on his victim must consider the
possible punishment policy of the teacher. This domain is
complicated enough to demonstrate a rich interdependency
between the bully’s mental models of others and its own de-
cision making. However, it is also simple enough to high-
light only the most relevant issues in constructing such men-
tal models and to support a broad suite of experiments.

Utility The bully agent uses a decision-theoretic model of
preferences, so it decides whether or not to pick on his vic-
tim through a finite-horizon evaluation of expected utility.
There are three components of the bully’s utility function:
(1) a desire to increase his power, which decreases when he
is punished; (2) a desire for affirmation from the onlooking
student, which increases when the onlooker laughs along;
and (3) a desire to decrease the victim’s power, which de-
creases when the bully picks on him (as well as when the
onlooker laughs at him). We define the utility function as
a linear combination of these three components, so that we
can represent the bully’s type as a triple of coefficients from
[0, 1]. To simulate the behavior of a bully whose aggres-
sion is intended to gain the approval of his peers, we would
use an agent with a higher weight for the second of the util-
ity components (increase affirmation). On the other hand, to
simulate a more sadistic bully, we would use a higher weight
for the third (decrease victim’s power).

The teacher also has three components to her utility func-
tion, corresponding to her desire to increase the power of the
three students. The teacher thus has a disincentive for pun-
ishing anyone unless doing so will deter acts that would re-
duce the victim’s power even more. A perfectly fair teacher
would give equal weight to the three students’ power. A
bully feeling persecuted by the teacher may think that she
favors the victim’s power over his own. On the other hand, a
bully may feel that the teacher shares his dislike of the victim
(i.e., has a lower weight for increasing the victim’s power).

We focus on the problem of the bully’s modeling of the
teacher, so we fix the onlooker to value his own power (i.e.,
he does not want to be punished), while also wanting to de-
crease the power of the victim out of dislike (i.e., he enjoys
laughing at the victim when the bully picks on him). Further-
more, both the bully and teacher know the correct model of
the onlooking student (i.e., |MO| = |MBO| = |MTO| = 1).

Actions The teacher has 7 options in her action set, AT .
She can do nothing; she can scold the bully, onlooker, or
the entire class; or she can punish the bully, onlooker, or
the entire class. Punishing a student causes a more severe
decrease in a student’s power than simply scolding. The on-
looking student has 2 options in his action set, AO: laugh
at the victim, or do nothing. The bully has 2 actions in his
action set, AB : pick on the victim or do nothing.

Policies To reduce the domain to its most essential aspects,
the bully’s policy, πB : MBO ×MBT → AB , is a function



of his mental model of the onlooker and teacher. Given that
the onlooker has only one possible mental model, the policy
space for the bully, ΠB , contains |AB ||MBT | distinct poli-
cies. Thus, the complexity of the bully’s problem of choos-
ing his correct policy is highly dependent on the number of
mental models that he must consider for the teacher.

Similarly, the onlooker’s policy, πO : MOB ×MOT →
AO, depends on only his mental model of the bully and
the teacher. The bully assumes that the onlooker knows the
bully’s true model and that the onlooker’s mental model of
the teacher is the same as the bully’s. Thus, in this current
investigation, we focus on only one entry in πO, namely the
one where mOB = mB and mOT = mBT , where there are
only two possible values: laughing at the victim or not.

We must also specify what the bully expects the teacher
to do, which depends on not only her mental models of
the students, but also on the prior actions of the students.
In other words, the teacher may perform a different action
when the bully picks on the victim than when he does not.
Thus, the policy, πT : MTB ×MTO × AB × AO → AT ,
is much more complicated than that of the students. How-
ever, we again simplify this model by having the bully as-
sume that the teacher knows the correct model of him (i.e.,
mTB = mB) and shares his mental model of the onlooker
(i.e., mTO = mBO). With this restriction, the teacher’s rel-
evant policy space, ΠT , contains |AT ||AB |·|AO| = 2401 dis-
tinct punishment policies for the teacher to consider. Thus,
even with our simplifying assumptions, there still remains a
large space of possible behaviors for the teacher.
Solution Mechanism We use boundedly rational agents
to simulate the behavior of all of the entities in our social
scenario. Thus, the bully’s SOLVE algorithm performs a for-
ward projection over his possible actions, computes the ex-
pected utility, and chooses the action with the highest value.
The forward projection computes the total utility over the
bully’s action, the onlooker’s subsequent response, and the
resulting punishment action (or lack thereof) taken by the
teacher. To determine the teacher’s policy, the bully applies
a SOLVE method from the teacher’s perspective that exhaus-
tively tries all possible policies in ΠT , computes the best re-
sponse policies for the bully and onlooker, and then chooses
the best policy based on her expected utility over the entire
interaction. Given this policy for the teacher, the bully and
onlooker can then choose their policies as best responses.

With this solution procedure, we can completely specify
the bully’s mental model of the teacher in terms of the three
utility weights that the bully attributes to her. In other words,
our initial space of candidate mental models, MBT , contains
one model for every vector of weights, ~w = [wB , wO, wV ],
subject to the constraint that

∑
w∈~w w = 1. This contin-

uous space generates an infinite number of mental mod-
els for the bully to potentially consider. In practice, the
bully can discretize the space by considering only points
along a grid. For a granularity of 0.1, there are 66 possi-
ble vectors: [0.0, 0.0, 1.0], [0.0, 0.1, 0.9], [0.0, 0.2, 0.8], . . . ,
[0.9, 0.1, 0.0], [1.0, 0.0, 0.0]. For a granularity of 0.01, there
are 5151 possible vectors, while for a granularity of 0.5,
there are only 6.

In choosing the discretization of this mental model space,
the bully must consider the interdependency between his
own decisions and the decisions he expects the teacher to
make. For example, if he picks on the victim, he is more
likely to be severely punished by a teacher for whom the
victim is a pet (i.e., for which wV is high), but he would be
more likely to escape punishment if he himself is a favorite
of the teacher (i.e., if wB is high). Thus, there is clearly
some value to be gained by maintaining differential mental
models of the teacher. However, it is unlikely that real-life
bullies juggle 66 (let alone 5151) possible mental models
of their teachers in their heads. In fact, it is unclear whether
even a space of 6 models is more than the bully needs to con-
sider. Furthermore, it is likely that the bully needs more fine-
grained distinctions in certain regions of the model space, so
a uniform discretization (regardless of the granularity) will
be suboptimal. Unfortunately, it is unclear what granularity
of discretization produces the minimal set of mental models
that is still sufficient for the bully’s decision-making needs.

This scenario is illustrative, and there are clearly many
dimensions along which we could enrich it. For example,
we could introduce state dependencies (e.g., the weaker the
victim, the more damage done by picking on him). How-
ever, while these additional wrinkles would change the par-
ticular answers provided by our methodology, they would
not change the ability of the methods presented in the fol-
lowing sections to provide such answers. In fact, additional
complications would only introduce more dimensions to dis-
cretize, making the need for an automated method for min-
imizing mental model spaces all the more urgent. Our core
methodology presents a very general method for quantify-
ing the value of candidate mental models even in the face of
these additional complications. Therefore, we have removed
as many extraneous domain features as possible, so as to be
able to provide the clearest illustration of the methods and
how they can be applied to any multiagent domain.

Behavior Equivalence

The modeling agent’s goal is to find a minimal set of mental
models that it needs to consider for the other agents. In look-
ing for possible bases for such minimization, we observe
that the modeling agent’s decisions often depend on only
the behavior of the agents being modeled. Agents model the
hidden variables of others so as to generate expectations of
their resulting behavior, but given the behavior of others, an
agent’s decision making is often conditionally independent
of the internal reasoning behind it. For example, in agent
teamwork, the mental states of the individual members have
no direct effect on performance; only the decisions (actions,
messages, etc.) derived from those mental states matter.
Similarly, in games, the payoffs received by the agents de-
pend on only the moves chosen by the players. In social sim-
ulations, the agents cannot read each others’ minds, so they
can base their decisions on only their observable behaviors.
Therefore, regardless of what underlying parameters govern
the modeled agent’s decision-making, its eventual behavior
is what has an impact on the modeling agent.



Behavior Equivalence Algorithm
This observation forms the basis for our first method for con-
structing a minimal space of mental models. If two mental
models produce the same behavior for the modeled agent,
then making a distinction between them does not help the
modeling agent. Therefore, it needs to include only one
of them for consideration. It can do so by computing the
policies corresponding to any candidate mental models and
inserting only those that generate distinct policies. Algo-
rithm 1 allows the agent to incrementally construct its men-
tal model space, M , by considering each candidate model,
m, in turn and inserting only those for which BEHAVIORE-
QUIVALENCE returns False.

Algorithm 1 BEHAVIOREQUIVALENCE(M,m)
1: for all m′ ∈M do
2: if SOLVE(m) = SOLVE(m′) then
3: return True
4: return False

For many domains, the repeated invocations of the SOLVE
function can be computationally intensive, but there is
plenty of opportunity for specialization of Algorithm 1. For
example, if the mental models correspond to points in a met-
ric space (as in our social simulation domain), it should be
possible to compare mental models to only their immediate
neighbors in that space. Furthermore, even if specializing
the algorithm is insufficient, there are many opportunities
for approximation as well. For example, one could easily
re-write the exhaustive loop in Line 1 to instead randomly
sample only a subset of models to compare against the new
candidate for behavior equivalence. Similarly, one could ap-
proximate the equivalence test in Line 2 to test the policies
for equality over only a randomly selected subset of entries.

Behavior Equivalence Results
The bully agent can generate a set of mental models that is
minimal with regard to behavior equivalence, but the pol-
icy chosen by the teacher also depends on her model of the
bully. For example, different bullies may be more afraid of
a teacher punishing the whole class because of him than
of being punished by himself. We thus performed a be-
havior equivalence construction of the mental model space
for different types of bullies. To do so, we discretized
the space of possible (real) bullies in the same way that
we discretized the space of possible mental models of the
teacher. Thus, we represent different types of bullies by
different vectors of utility weights, ~w = [wB , wO, wV ],
and discretize the set of possible types into 66 distinct
such vectors, [0.0, 0.0, 1.0], [0.0, 0.1, 0.9], [0.0, 0.2, 0.8],
. . . , [0.9, 0.1, 0.0], [1.0, 0.0, 0.0].

In our experiments, we had each of the 66 possible
bully types consider the 66 candidate mental models for the
teacher, also generated with a granularity of 0.1. We gave
the teacher and onlooker the correct model of the bully and
of each other when running Algorithm 1. 8 types of bullies
constructed a mental model space that was minimal with re-
spect to behavior equivalence (denoted by M b

BT ) that had

only 4 of the original 66 candidate mental models. The other
58 types of bullies constructed a space of 5 models.

Behavior equivalence provides a clear benefit to these
types of bully agents. In particular, it is notable that, al-
though the 66 types of teachers had 2401 policies to choose
from, a specific bully could expect to come across only 4 or
5 distinguishable teacher behaviors. In fact, looking across
the results for all of the possible bully types, there were
only 8 policies that were ever selected by the teacher in the
66 · 66 = 4356 bully-teacher combinations. The reason that
so much of the teacher’s policy space is undesirable for her
is that the bully’s behavior is constrained by his utility. For
example, regardless of where in our utility space he is, the
bully always prefers not being punished to being punished.
Therefore, it would never make sense for the teacher to adopt
a policy of punishing the bully if he does nothing to the vic-
tim and doing nothing to him if he does.

Utility Equivalence
There are some multiagent domains where the modeling
agent derives some direct utility from the values of hidden
variables. For example, some teams may receive additional
utility when all of the team members have the same beliefs
about the current team plans, even if such coordination of
beliefs is not required for achieving the desired behavior. Al-
ternatively, in our social simulation, the teacher may prefer
being liked by her students, rather than feared, even if both
cases produce complete obedience. In such cases, behav-
ior equivalence’s focus on only observable actions may ig-
nore some necessary distinctions in the mental model space.
However, it is still safe to assume that the modeled agent
matters only in so far as it affects the modeling agent’s ex-
pected utility. The modeling agent is thus completely in-
different between different mental models that produce the
same expected utility in its own execution.

Utility Equivalence Algorithm
This observation leads to our second method for generating
a minimal mental model space. If the modeling agent does
not lose any expected utility when using a particular men-
tal model when the correct model is actually another, then
making a distinction between the two models does not help.
Therefore, it is safe for the modeling agent to remove one of
them from consideration. It can do so by computing its ex-
pected utility based on the policies corresponding to each of
the possible mental models (of the modeled agent) and insert
only those that lead to lost utility when mistaken for another
already under consideration. Like Algorithm 1 for behav-
ior equivalence, Algorithm 2 allows the agent to construct
its mental model space, M , incrementally, by considering
each candidate model, m, in turn and inserting only those
for which UTILITYEQUIVALENCE returns False.

While behavioral equivalence requires only the mod-
eled agent’s policy, utility equivalence requires the further
computation of the modeling agent’s own best response to
that policy (where its own model is mmodeler). Line 4
shows that the modeling agent computes the expected utility
(uwrong) it will derive if it solves for its policy assuming



Algorithm 2 UTILITYEQUIVALENCE(M,m)
1: for all m′ ∈M do
2: π ← SOLVE(m), π′ ← SOLVE(m′)
3: uright ← EU

[
SOLVE

(
mmodeler

∣∣ m
)∣∣ π

]
4: uwrong ← EU

[
SOLVE

(
mmodeler

∣∣ m′)∣∣ π
]

5: if uright − uwrong ≤ 0 then
6: return True
7: return False

that the modeled agent is of type m′, when it is actually of
type m. Line 3 computes its expected utility (uright) when it
holds the correct mental model, m. If the first is lower than
the second, then the agent must include m in its minimal
mental model space.

The inequality in Line 5 accounts for the possibility that
an incorrect mental model may produce an actual utility gain
when the agent being modeled, in turn, has an incorrect
model of the modeling agent. Over time, if the agent being
modeled updates its belief about the modeling agent, then
such a utility gain is unlikely, because the modeled agent
could eventually settle on a best response to the modeling
agent’s misconception. However, in the transient behavior,
the modeled and modeling agents may inadvertently act in
ways that improve the modeling agent’s utility, despite the
error in mental models.

Algorithm 2 adds another round of calls to the SOLVE
function beyond what behavioral equivalence required. The
additional cost comes with the benefit of a guaranteed min-
imality, in that removing any mental model from the gener-
ated space will cause the modeling agent to suffer a loss in
expected utility.

Utility Equivalence Results
To generate the bully’s mental models of the teacher that
were minimal with respect to utility equivalence, we fol-
lowed the same experimental setup as for behavior equiva-
lence. The 66 types of bully agents ran Algorithm 2 over the
66 candidate mental models. For this specific scenario, be-
havior equivalence implies utility equivalence, as the bully
agent derives no direct utility from the teacher’s intrinsic
parameters. We can thus cluster the utility equivalence re-
sults according to the further reductions in mental model
space achieved from M b

BT . Of the 58 bully types with∣∣M b
BT

∣∣ = 5, 11 types of bullies constructed a minimal men-
tal model space with respect to utility equivalence that had
only 2 of the 66 candidate teacher models, while the other
47 types constructed a minimal mental model space of size
4. Of the remaining 8 bully types with

∣∣M b
BT

∣∣ = 4, all of
them generated a space of 3 mental models. Furthermore,
for every type of bully, the mental model spaces constructed
by utility equivalence (denoted Mu

BT ) are all strict subsets
of those constructed by behavior equivalence.

Some cases of utility equivalence occur for bullies with
extreme utility weights. For example, to a bully who cares
about only hurting the victim (i.e, ~w = [0.0, 0.0, 1.0]), men-
tal models that differ on whether he himself gets punished

are equivalent, because he does not care about the decrease
in his own power. However, mental models that differ on
whether or not the onlooker gets punished are not equiva-
lent, because he wants the onlooker to laugh at the victim as
well, to maximize the damage inflicted on the victim.

Utility equivalence sometimes occurs in this experiment
when an incorrect mental model of the teacher increases the
bully’s expected utility. For example, two mental models of
the teacher may differ regarding whether they would punish
the onlooker. From the bully’s point of view, if the onlooker
laughs regardless of the teacher’s policy, then the bully does
not care whether the onlooker is punished. Thus, while these
two mental models produce different teacher behaviors, mis-
taking one for the other does not decrease the expected util-
ity of the bully, who is then justified in ignoring the distinc-
tion between them.

Approximate Utility Equivalence
A mental model space constructed according to utility equiv-
alence is truly minimal with respect to the modeling agent’s
decision making. Any further clustering of mental models
will cost the modeling agent utility. However, the modeling
agent can reduce its cost of maintaining beliefs and finding a
policy over the mental model space by also clustering those
models that sacrifice a small amount of utility.

Approximate Utility Equivalence Algorithm

This observation leads to our third method for reducing the
space of possible mental models. We can easily adapt our
utility equivalence algorithm to be tolerant of any utility loss
below some positive threshold.

Algorithm 3 UTILITYAPPROX(M,m, θ)
1: for all m′ ∈M do
2: π ← SOLVE(m), π′ ← SOLVE(m′)
3: uright ← EU

[
SOLVE

(
mmodeler

∣∣ m
)∣∣ π

]
4: uwrong ← EU

[
SOLVE

(
mmodeler

∣∣ m′)∣∣ π
]

5: if uright − uwrong ≤ θ then
6: return True
7: return False

The pseudocode in Algorithm 3 is written to support ex-
ecution with a fixed threshold in mind. Alternatively, one
could perform Lines 1–4 and then choose an appropriate
threshold, θ, to reduce the space to an appropriate size.
In other words, one would first profile the possible errors
that would be derived from incorrect mental models before
choosing a clustering. One could also easily vary the com-
putation to use error measures other than expected utility.
For example, one might be interested in worst-case utility
loss instead of expected-case. Simply replacing the expec-
tation in Lines 3 and 4 with a maximization would make
the desired adjustment. There are any number of variations
that would similarly modify the optimality criterion used in
weighing the utility lost from the mistaken mental model.



Figure 1: Size of model spaces vs. increasing leniency for
utility loss, across all types of bully agents.

Approximate Utility Equivalence Results
To construct the bully’s minimal mental models for the
teacher according to approximate utility equivalence, we
followed the same experimental setup as for the other two
methods. Figure 1 shows the results across our three meth-
ods for mental model space construction. Each path from
left to right represents the size of the mental model space for
at least one possible type of bully as we raise its tolerance
for utility loss. At the y-axis, all of the bully agents have
all 66 of the candidate mental models. Then we see that
these agents need to consider only 4 or 5 models, using only
the behavior equivalence method. The next point shows that
the bully agents have spaces of 2–4 mental models when us-
ing only the utility equivalence method. Continuing along a
path to the right represents the further reduction in the men-
tal model space that comes with clustering mental models
that cost less that the given threshold of expected utility.

Figure 2 shows the number of bully types (i.e., utility
weight combinations) that follow each of the possible paths.
For example, there are 7 (the “#” column) bully types that
follow a path that leads to a mental model space of size one
with only 10% loss of expected utility. If bully agents of this
type are willing to tolerate a small utility loss, they can do
away with modeling the teacher altogether!

At the opposite end of the spectrum, there is one bully
type that follows the upper envelope of the graph. For this
bully type, Figure 1 shows that utility equivalence (UE) con-
structs a mental model space of size 4, down from the size
5 of the space using only behavior equivalence (BE). How-
ever, we see that even if the bully is willing to tolerate a loss
of 25% of its expected utility, it still needs this full space
of 4 models. If it wants to reduce its mental model space
by even one element, it can incur an up to 50% loss in ex-
pected utility if it is wrong. This bully type is also one of 14
in our sample space for which tolerating even 100% utility
loss is not sufficient to warrant eliminating mental model-
ing together, as using the wrong mental model will lead to
negative utility.

BE UE 10% 25% 50% 100% # BE UE 10% 25% 50% 100% #
4 3 1 1 1 1 1 5 4 2 2 1 1 9
4 3 2 1 1 1 1 5 4 2 2 2 1 10
4 3 2 2 1 1 3 5 4 2 2 2 2 3
4 3 2 2 2 1 3 5 4 3 1 1 1 2
5 2 1 1 1 1 1 5 4 3 2 2 1 4
5 2 2 2 1 1 1 5 4 3 2 2 2 2
5 2 2 2 2 1 2 5 4 3 3 2 1 3
5 2 2 2 2 2 7 5 4 3 3 2 2 1
5 4 1 1 1 1 5 5 4 3 3 3 1 1
5 4 2 1 1 1 6 5 4 4 4 3 2 1

Figure 2: Number of bully types for each progression of
mental model sizes with increasing leniency for utility loss.

Discussion
While the exact numbers in Table 2 are specific to our ex-
ample domain, they provide a concrete demonstration of our
general ability to quantify the value of mental models to
the modeling agent. To make the final decision, the agent
must consider the computed value of the mental model space
along with the cost of performing the actual model update
and decision making during execution. This tradeoff will, in
part, depend on the agent framework, but the payoff can be
considerable. For example, as already described, the space
and time complexity of the policy solution and model update
procedures of the modeling agent can grow dramatically
with the number of mental models to consider. For example,
our bully agent employs a decision-theoretic approach by
computing a probability distribution over the possible men-
tal models and by performing policy iteration to determine
its optimal behavior. The computational complexity of both
algorithms grows exponentially with the number of possi-
ble mental models. Such an optimizing approach is possible
when using the minimal mental model spaces of size 2–4,
but uninformed discretizations (e.g., 66 models at granular-
ity 0.1) would require approximate methods to be able to
maintain the same practical computation times.

We should stress that the general problem of determining
minimal mental model spaces, as well as the approaches we
present to solve that problem, are not limited to our chosen
mental model representation. We can examine the general
problem of determining minimal mental model spaces in the
context of other agent representations as well. At a very
general level, Interactive Partially Observable Markov Deci-
sion Problems (Interactive POMDPs) represent mental mod-
els as types that capture the beliefs and planning processes
of other agents (Gmytrasiewicz & Doshi 2005). Given a set
of possible types for the teacher, a bully agent can solve an
Interactive POMDP to derive an optimal policy for his be-
havior, based on a continually updated probabilistic belief
over which type she actually was. In this context, our work
solves the unaddressed problem of determining the minimal
set of possible types for the bully to consider.

Most other existing work in agent modeling has no ex-
plicit enumeration of the possible mental models to con-
sider. Such approaches typically start from a domain rep-
resentation that only implies the possible states of the agent
being modeled. Much of the early work in plan recog-



nition used first-order logic to represent the plan libraries
of the modeled agent and standard inference mechanisms
to derive a belief for the modeling agent (Kautz & Allen
1986). Later work used a probabilistic model of the plan li-
brary and applied Bayesian networks to infer a distribution
over possible mental models (Charniak & Goldman 1993;
Goldman, Geib, & Miller 1999). These plan libraries im-
plicitly specify a set of mental models in the form of the
possible combinations of plans that the modeled agent may
be actively pursuing at any one time.

Using such approaches in the classroom scenario, the
space of mental models of the teacher is the set of possi-
ble active plan configurations implied by the plan library. A
bully agent faces the problem of determining when to stop
enriching its beliefs about the teacher’s plan library (e.g.,
by including the subplans of an existing plan). The plan li-
brary is typically a generative model of the planning behav-
ior of the agent being modeled. However, different students
will have different priorities in modeling the teacher’s plans.
For example, while the bully would be especially concerned
about the teacher’s punishment plans, a better behaved stu-
dent might be more concerned about her educational plans.
Given that the number of possible mental models is roughly
exponential in the possible plans, it does not make sense for
all of the students to use the same, complete plan library of
the teacher. Whether the plan library is encoded by human
designers or learned by the modeling agent itself, our algo-
rithms allow different agents to automatically make different
decisions about their minimal set of mental models.

Other existing agent modeling techniques forego explicit
modeling of the plan library as well (Hong 2001). These
methods instead start with a set of domain axioms that rep-
resent the possible states and actions of the modeled agent
and its environment. Again, the number of mental models
grows roughly exponentially with the number of state pred-
icates and actions that are included in the domain model.
A bully agent using such a representation can use our al-
gorithms to decide what atoms and axioms to include for a
minimal domain model that is still sufficient for capturing
the relevant details of the teacher’s planning state.

Our methodology can also potentially create more psy-
chologically plausible social simulations. In our experi-
ments, the bully agents who were more attention-seeking
(i.e., higher wO) derived less value from the more complete
mental model spaces for the teacher. Our characterization
of bully types is consistent with the psychological findings
that one can characterize different types of childhood ag-
gression by the different goals that bullies have (Schwartz
2000). Thus, we can use our algorithms to explore the men-
tal model spaces that we derive from those different goals
and validate them against experimental data. Having vali-
dated the agents against such data, we can generate more
confidence in the realism of the simulation.

Conclusion
At a higher level, the result of this investigation provides a
key insight into the impact of social interaction on the design
of multiagent systems. As designers, our immediate reaction
is to view such interactions as complicating the problem of

deriving appropriate multiagent behavior. However, as our
results show, the interplay between the decision-making and
modeling efforts of the individual agents is also highly con-
straining on that behavior. For example, out of the 2401
possible policies for the teacher, only 8 were ever desirable
when interacting with our 66 types of bullies. When we view
the problem of modeling other agents through the subjective
lens of the modeling agent’s own decision-making, we gain
a utility metric that we can use both to restrict the scope of
the modeling problem and to derive algorithms to solve it.

We used the utility metric to design algorithms that quan-
tify the value of distinctions made within the mental model
space and reduce that space accordingly. An agent can also
use this same metric to derive a mental model space from
scratch, simply by quantifying the value of adding mental
models to the space of consideration. In this manner, our
metric allows an agent designer to isolate those aspects of
the mental models that are most relevant to the agent. We ex-
pect the algorithms to give such designers novel insight into
the nature of their domains and to minimize the computa-
tional complexity of modeling other agents in all multiagent
domains where such modeling is beneficial.
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